Molecular Engineering Thermodynamics

Molecular Engineering Thermodynamics

ISBN-10:
0521765625
ISBN-13:
9780521765626
Pub. Date:
07/10/2014
Publisher:
Cambridge University Press

Hardcover

View All Available Formats & Editions
Current price is , Original price is $105.0. You
Select a Purchase Option (New Edition)
  • purchase options
    $105.00
  • purchase options

Overview

Molecular Engineering Thermodynamics

Building up gradually from first principles, this unique introduction to modern thermodynamics integrates classical, statistical and molecular approaches, and is especially designed to support students studying chemical and biochemical engineering. In addition to covering traditional problems in engineering thermodynamics in the context of biology and materials chemistry, students are also introduced to the thermodynamics of DNA, proteins, polymers and surfaces. It includes over 80 detailed worked examples, covering a broad range of scenarios such as fuel cell efficiency, DNA/protein binding, semiconductor manufacturing, and polymer foaming, emphasising the practical real-world applications of thermodynamic principles; more than 300 carefully tailored homework problems, designed to stretch and extend students' understanding of key topics, accompanied by an online solution manual for instructors; and all the necessary mathematical background, plus resources summarising commonly used symbols, useful equations of state, microscopic balances for open systems, and links to useful online tools and datasets.

Product Details

ISBN-13: 9780521765626
Publisher: Cambridge University Press
Publication date: 07/10/2014
Series: Cambridge Series in Chemical Engineering Series
Edition description: New Edition
Pages: 501
Sales rank: 429,426
Product dimensions: 7.44(w) x 9.69(h) x 1.06(d)

About the Author

Juan J. de Pablo is the Liew Family Professor at the Institute for Molecular Engineering, University of Chicago, and a former Director of the Materials Science and Engineering Center on Structured Interfaces, University of Wisconsin, Madison. He has won several teaching awards, been awarded a Presidential Early Career Award in Science and Engineering from the NSF and is a Fellow of the APS and AAAS.

Jay D. Schieber is Professor of Chemical Engineering in the Department of Chemical and Biological Engineering and the Department of Physics, and Director of the Center for Molecular Study of Condensed Soft Matter, at the Illinois Institute of Technology. He has been a visiting professor at universities in both Europe and Asia, holds numerous teaching awards, and was the 2004 Hougen Scholar at the University of Wisconsin, Madison.

Table of Contents

1. Introduction; 2. The postulates of thermodynamics; 3. Generalized thermodynamic potentials; 4. First applications of thermodynamics; 5. Application to process design: flow systems; 6. Statistical mechanics; 7. Molecular interactions; 8. Fugacity and vapor-liquid equilibrium; 9. Activity, vapor-liquid, and liquid-liquid equilibrium; 10. Reaction equilibrium; 11. Thermodynamics of polymers; 12. Thermodynamics of surfaces; Appendix A. Mathematical background; Appendix B. Fluid equations of state; Appendix C. Microscopic balances for open systems; Bibliography; Index.

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews