Molecular Nanomagnets

Molecular Nanomagnets

Pub. Date:
Oxford University Press, USA


View All Available Formats & Editions
Current price is , Original price is $63.0. You
Select a Purchase Option (Reprint)
  • purchase options
  • purchase options


Molecular Nanomagnets

Nanomagnetism is a rapidly expanding area of research which appears to be able to provide novel applications. Magnetic molecules are at the very bottom of the possible size of nanomagnets and they provide a unique opportunity to observe the coexistence of classical and quantum properties. The discovery in the early 90's that a cluster comprising twelve manganese ions shows hysteresis of molecular origin, and later proved evidence of quantum effects, opened a new research area which is still flourishing through the collaboration of chemists and physicists. This book is the first attempt to cover in detail the new area of molecular nanomagnetism, for which no other book is available. In fact research and review articles, and book chapters are the only tools available for newcomers and the experts in the field. It is written by the chemists originators and by a theorist who has been one of the protagonists of the development of the field, and is explicitly addressed to an audience of chemists and physicists, aiming to use a language suitable for the two communities.

Product Details

ISBN-13: 9780199602261
Publisher: Oxford University Press, USA
Publication date: 06/04/2011
Edition description: Reprint
Pages: 416
Product dimensions: 6.10(w) x 9.20(h) x 0.80(d)

About the Author

Dante Gatteschi Department of Chemistry Università degli Studi di Firenze via della Lastruccia 3
50019 Sesto Fiorentino ITALY Roberta Sessoli Department of Chemistry Università degli Studi di Firenze via della Lastruccia 3
50019 Sesto Fiorentino ITALY Jacques Villain
17 Boulevard de Jomardière,

Table of Contents

1. Introduction
2. Magnetic Interactions in Molecular Systems
3. Observation of Microscopic Magnetism
4. Single Molecular Magnets
5. Thermally Activated Magnetic Relaxation
6. Magnetic Tunnelling of an Isolated Spin
7. Introduction to Path Integrals
8. Tunnelling in a Time-Dependent Magnetic Field at Low Temperature
9. Interaction of a Spin with the External World at Low Temperature
10. Tunnelling between Excited States
11. Coherence and Decoherence
12. Disorder and Magnetic Tunnelling
13. More Experiments on Single Molecule Magnets
14. Other Magnetic Molecules
15. Emerging Trends in Molecular Nanomagnetism
A. Systems of Units, Physical Contants and Basic Mathematical Tools
B. The Magnetic Field
C. How Irreversibility Comes In
D. Basic Properties of the Master Equation
E. Derivation of the Arrhenius Law
F. Phonons and How to Use Them
G. High Order Perturbation Theory
H. Proof of the Landau-Zener-Stuckelberg Formula
I. Tunnelling Between Hyperfine States
J. Specific Heat
K. master Equation for the Density Matrix

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews