Multi-Hamiltonian Theory of Dynamical Systems

Multi-Hamiltonian Theory of Dynamical Systems

by Maciej Blaszak

Paperback(Softcover reprint of the original 1st ed. 1998)

Choose Expedited Shipping at checkout for guaranteed delivery by Friday, October 18


This book offers a modern introduction to the Hamiltonian theory of dynamical systems, presenting a unified treatment of all types of dynamical systems, i.e., finite, lattice, and field. Particular attention is paid to nonlinear systems that have more than one Hamiltonian formulation in a single coordinate system. As this property is closely related to integrability, this book presents an algebraic theory of integrable.

Product Details

ISBN-13: 9783642637803
Publisher: Springer Berlin Heidelberg
Publication date: 04/12/2013
Series: Theoretical and Mathematical Physics
Edition description: Softcover reprint of the original 1st ed. 1998
Pages: 350
Product dimensions: 6.10(w) x 9.25(h) x 0.03(d)

Table of Contents

1. Preliminary Considerations.- 2. Elements of Differential Calculus for Tensor Fields.- 2.1 Tensors.- 2.2 Tensor Fields.- 2.3 Transformation Properties of Tensor Fields.- 2.4 Directional Derivative of Tensor Fields.- 2.5 Differential ?-Forms.- 2.6 Flows and Lie Transport.- 2.7 Lie Derivatives.- 3. The Theory of Hamiltonian and Bi-Hamiltonian Systems.- 3.1 Lie Algebras.- 3.2 Hamiltonian and Bi-Hamiltonian Vector Fields.- 3.3 Symmetries and Conserved Quantities of Dynamical Systems.- 3.4 Tensor Invariants of Dynamical Systems.- 3.5 Algebraic Properties of Tensor Invariants.- 3.6 The Miura Transformation.- 4. Lax Representations of Multi-Hamiltonian Systems.- 4.1 Lax Operators and Their Spectral Deformations.- 4.2 Lax Representations of Isospectral and Nonisospectral Hierarchies.- 4.3 The Lax Operator Algebra.- 5. Soliton Particles.- 5.1 General Aspects.- 5.2 Algebraic Structure of Linear Systems.- 5.3 Algebraic Structure of Multi-Soliton Representation.- 5.4 Multi-Soliton Perturbation Theory.- 6. Multi-Hamiltonian Finite Dimensional Systems.- 6.1 Stationary Flows of Infinite Systems. Ostrogradsky Parametrizations.- 6.2 Stationary Flows of Infinite Systems. Newton Parametrization.- 6.3 Constrained Flows of Lax Equations.- 6.4 Restricted Flows of Infinite Systems.- 6.5 Separability of Bi-Hamiltonian Chains with Degenerate Poisson Structures.- 6.6 Nonstandard Multi-Hamiltonian Structures and Their Finite Dimensional Reductions.- 6.7 Bi-Hamiltonian Chains on Poisson-Nijenhuis Manifolds.- 7. Multi-Hamiltonian Lax Dynamics in (1+1)-Dimensions.- 7.1 Hamiltonian Dynamics on Lie Algebras.- 7.2 Basic Facts About R-Structures.- 7.3 Multi-Hamiltonian Dynamics of Pseudo-Differential Lax Operators.- 7.4 Multi-Hamiltonian Dynamics of Shift Lax Operators.- 8. Towards a Multi-Hamiltonian Theory of (2+1)-Dimensional Field Systems.- 8.1 The Sato Theory.- 8.2 Multi-Hamiltonian Lax Dynamics for Noncommutative Variables.- References.

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews