Nanotechnology in Electrocatalysis for Energy

Nanotechnology in Electrocatalysis for Energy

Paperback(Softcover reprint of the original 1st ed. 2013)

$149.99
View All Available Formats & Editions
Use Standard Shipping. For guaranteed delivery by December 24, use Express or Expedited Shipping.

Product Details

ISBN-13: 9781493945375
Publisher: Springer New York
Publication date: 09/24/2016
Series: Nanostructure Science and Technology , #170
Edition description: Softcover reprint of the original 1st ed. 2013
Pages: 331
Product dimensions: 6.10(w) x 9.25(h) x 0.03(d)

About the Author

Dr. Alessandro Lavacchi is a researcher at the Italian National Research Council (ICCOM-CNR). His research is largely devoted to energy related material science. He has co-authored more than 50 papers in leading international journals. His recent research has been focused on the development of nano-structured materials for the exploitation of biomass derived products in electrochemical devices. He has contributed to the development of "facile" methods for the synthesis of platinum-free electrocatalysts for application in fuel cells, electrolyzers and raw chemical synthesis. At present, he is Editor-in-Chief of "Coatings", an international journal devoted to material science and application of deposited materials.

Dr Hamish Miller obtained his PhD in Chemistry at the Queen’s University of Belfast, Northern Ireland in 1999. He worked in the renewable energy industry for 8 years where he developed industrial processes for the production of electrocatalysts for fuel cells. In 2011, he joined the National Research Council of Italy (ICCOM-CNR), based in Florence, Italy. His research is concentrated in the field of renewable energy, in particular in fuel cells, hydrogen production and the electroreduction of CO2. He has developed expertise in alkaline membrane technology and non noble metal electrocatalysis. His recent work has appeared in The Journal of Power Sources, Chemsuschem and The Journal of Materials Chemistry A.

Dr. Francesco Vizza is Research Director at the Institute of Chemistry of Organometallic Compounds of the National Research Council, (ICCOM-CNR) Florence, Italy. He is the author of 150 publications in qualified international journals, 1 monograph, several book chapters and 32 patents, on catalysis, electrocatalysis and organometallic chemistry. H-index 41; his publications on international journals have been cited 4500 times with an average of 31 citations per paper. His current research interests include: synthesis and characterization of nanosized metal electrocatalysts for fuel cells, the production of hydrogen by electrolysis of renewable resources, catalysts for hydrogen evolution by controlled hydrolysis of metal hydrides, portable fuel-cell power generators and the electroreduction of CO2.

Table of Contents

PART 1: FUNDAMENTALS Chapter 1: Introduction 1.1 Key concepts 1.2 Energy and Resources 1.3 Environmental concerns 1.4 Renewable energy resources 1.4.1 The EROEI and the Life Cycle Analysis 1.4.2 The role of hydrogen and energy vectors 1.5 Fuel Cells as Power Sources 1.6 Electrolytic Hydrogen Production 1.7 CO2 Electroreduction 1.8 Electrocatalysis and the need for nanotechnology 1.9 This book’s approach References Chapter 2: A bird’s eye view of energy related electrochemistry 2.1 Key concepts 2.2 Thermodynamics 2.2.1 The Electrochemical Cell 2.2.2 Electrochemical reaction and the Nernst equation 2.3 Electrochemical kinetics 2.3.1 Charge Transfer 2.3.2 Mass transfer 2.3.3 Adsorption 2.4 Electrochemical Techniques 2.4.1 Voltammetry 2.4.2 Rotating Disk and Rotating Ring Disk methods 2.5 Major Energy Related Electrochemical Reactions 2.5.1 Hydrogen oxidation and evolution reactions 2.5.2 Oxygen evolution and oxidation reaction 2.5.3 Methanol Oxidation 2.5.4 Ethanol electroxidation 2.5.5 Other Alcohols 2.5.6 Formic acid 2.5.7 CO2 electroreduction reaction References Chapter 3: Electrochemical device for energy conversion and storage 3.1 Key concepts 3.2 Fuel Cells - General Background 3.2.1 Components of PEM fuel cell 3.2.2 Fuel cell key performance parameters 3.2.3 Main operational parameters 3.3 Major low temperature fuel cells 3.3.1 Hydrogen PEMFC 3.3.2 Direct Methanol Fuel Cells 3.3.3 Direct Alcohol Fuel Cells 3.4 Electrolysis - General Background 3.4.1 Alkaline Electrolysis 3.4.2 Zero Gap Electrolysis 3.4.3 The proton exchange membrane water electrolyzer 3.4.4 Electrolysis with anode reactions other than OER References Chapter 4: Factors affecting design 4.1 Key concepts 4.2 Technology targets 4.2.1 PEMFC 4.2.1.1 Durability 4.2.1.2 Cost 4.2.1.3 Performance 4.2.2 Electrolysis 4.2.2.1 Main issues hampering the commercial diffusion of electrolysis 4.3 Main electrocatalyst aspects affecting design 4.3.1 Electrochemically Active Surface Area 4.3.2 Surface Defects, Surface structure and Particle Shape 4.3.3 Transport Issues 4.4 Constraints affecting design 4.4.1 Precious metal loading 4.4.2 Stability 4.4.3 Scale-up and manufacturing 4.5 The potential of nanotechnology in electrocatalyst design References PART 2. SUPPORT MATERIALS Chapter 5: Carbon based nanomaterials 5.1 Key concepts 5.2 Influence of the carbon support on the catalytic activity of metal nanoparticles 5.3. Carbon Blacks 5.3.1 Activation and functionalization of carbon blacks 5.4 Other carbon nanostructured materials 5.4.1 Mesoporous carbon 5.4.2 Carbon gels 5.4.3 Carbon nanotubes 5.4.4 Graphene References Chapter 6. Other Support Nanomaterials 6.1 Key Concepts 6.2 Inorganic oxides 6.2.1 Sub-stoichiometric titanium oxides 6.2.2 Stoichiometric titanium oxides 6.2.3 Metal doped titanium oxide 6.2.4 Tungsten Oxides 6.2.5 Other Oxides 6.3 Inorganic metal carbides and nitrides 6.3.1 WC 6.4.2 Other Carbides 6.4.3 Nitrides 6.5 Conductive polymers 6.6 Composite Materials References PART 3. ACTIVE MATERIALS Chapter 7: Supported metal nanoparticles 7.1 Key concepts 7.2 Metal nanoparticle synthetic techniques 7.2.1 Low temperature chemical precipitation 7.2.2 Impregnation 7.2.3 Colloidal 7.2.4 Microemulsions 7.2.5 Polyol method 7.2.6 Microwave assisted polyol 7.2.7 Electrodeposition 7.2.8 Pulse electrodeposition (PED) 7.2.9 Vapor phase methods 7.2.11 Sputter deposition technique 7.2.12 Sonochemistry and sonoelectrochemistry 7.2.13 Spray pyrolisis 7.2.14 Supercritical Fluids 7.2.14.1 Supercritical deposition technique 7.2.15 High Energy Ball Milling 7.3 Commercial supported nanoparticles for electrocatalysis References Chapter 8 Shape and structure controlled metal nanoparticles 8.1 Key concepts 8.2 Identification of High-Index Facets 8.3 Surface structure effects in electrocatalysis: 8.3.1 The oxidation of small organic molecules 8.3.2 Electrooxidation of CO 8.3.3 Oxygen Reduction 8.3.4 Effects of surface structure on selectivity in higher alcohol electrooxidation 8.4 Common strategies and synthetic methods 8.4.1 Small adsorbate-assisted facet control of Pt and Pd nanocrystals 8.4.1.1 Carbon monoxide 8.4.1.2 Halide anions. 8.4.1.3 Amines. 8.4.1.4 Formaldehyde. 8.4.2 Facet control by electrochemical methods 8.4.3 UPD 8.4.4 Kinetic Controlled Growth 8.4.5 Seeded growth 8.5 Other Pt and Pd morphologies with High-Index Facets 8.5.1 Pd, Au and Pt nanowire arrays 8.5.2 Bimetallic Platinum and Palladium based nanowires 8.5.3 Multiple Twinned Pt nanorods 8.5.4 Nanostructured thin film (NSTF) catalysts References Chapter 9: Monolayer decorated core shell and hollow nanoparticles 9.1 Key concepts 9.2 Core shell nanoparticles 9.3 Synthesis of platinum and platinum alloy shells 9.3.1 Underpotential deposition (UPD) 9.3.2 Electrochemical de-alloying 9.3.3 Annealing and stepwise chemical approaches 9.4 Non platinum metal shells 9.5 Hollow nanoparticles References Chapter 10: Molecular complexes in electrocatalysis for energy production and storage 10.1 Key concepts 10.2. Rhodium molecular catalysts for Organometallic Fuel Cells (OMFCs). 10.3 Bi-metallic Ni-Ru molecular complexes as electrocatalysts for PEMFCs. 10.4 Fe and Ni molecular catalysts for hydrogen production by electrocatalysis 10.5 Molecular catalysts for electrochemical and photoelectrochemical reduction of CO2 10.5.1 Macrocyclic complexes. 10.5.2 Metal bipyridine complexes 10.5.3 Metal phosphine complexes 10.5.4 Carbon monoxide dehydrogenases enzymes 10.5.5 Photo-Electro-Reduction of CO2 10.6 Molecular complexes for fuel cells cathodes 10.6.1 Cathodes based on transition metal complexes with phthalocyanine ligands 10.6.2 Transition metal complexes with porphyrin ligands 10.6.3 Carbon-supported metal chelates for ORR synthesized at high temperature References Chapter 11: Concluding Remarks 11.1 Summary 11.2 Considerations 11.3 Thinking outside of the box References

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews