Nearrings: Some Developments Linked to Semigroups and Groups

Nearrings: Some Developments Linked to Semigroups and Groups

by G. Ferrero

Paperback(Softcover reprint of the original 1st ed. 2002)

$249.99
Choose Expedited Shipping at checkout for guaranteed delivery by Thursday, January 24

Product Details

ISBN-13: 9781461379690
Publisher: Springer US
Publication date: 09/17/2011
Series: Advances in Mathematics , #4
Edition description: Softcover reprint of the original 1st ed. 2002
Pages: 611
Product dimensions: 6.30(w) x 9.45(h) x 0.05(d)

Table of Contents

Preface. Acknowledgments. 1: Elements. 1.1. Notations and terminology. 1.2. Definitions and first examples. 1.3. Clay functions and elementary properties. 1.4. Polynomial nearrings. 1.5. Axiomatical and geometric questions. 1.6. Ideals. 1.7. Distributivity conditions. 1.8. maps. 1.9. Modules. 1.10. On radicals. 1.11. Density and interpolation. 1.12. Group and matrix nearrings. 1.13. Quasi-local nearrings. 1.14. Varieties. 2: Constructions. 2.1. Global constructions. 2.2. Orbits of Clay semigroups. 2.3. Syntactic nearrings. 2.4. Deforming the product. 2.5. Deforming the sum. 3: Regularities. 3.1. Idempotents in nearrings. 3.2. Reduced nearrings. 3.3. Regularity conditions. 3.4. Regular and right strongly regular nearrings. 3.5. Generalized nearfields. 3.6. Stable and bipotent nearrings. 3.7. Some nearrings are nearfields. 4: Multiplicative Identities. 4.1. Permutation identities. 4.2. Commutativity conditions. 4.3. Herstein's condition. 4.4. Particular periodic nearrings. 4.5. Derivations. 5: Prime and Minimal. 5.1. Prime and semiprime ideals. 5.2. M-systems. 5.3. On hereditariness of the i-prime radicals. 5.4. Links among various types of primeness. 5.5. Regularities and primenesses according to Grönewald and Olivier. 5.6. A generalization of primary Nötherdecomposition. 5.7. Minimal ideals. 6: 'Simpler' Nearrings. 6.1. Groups hosting only trivial nearrings. 6.2. Strictly simple nearrings. 6.3. On n-simple and n-strictly simple nearrings. 6.4. Weakly divisible nearrings. 6.5. H-integral nearrings. 7: Maps. 7.1. Generalizations of homomorphisms. 7.2. Endomorphism nearrings. 7.3. Endomorphism nearrings can be rings. 7.4. Nearrings of maps with condition on the images. 7.5. Coincidence problems. 7.6. The isomorphism problem. 8: Centralizers. 8.1. Introductory remarks. 8.2. Homogeneous functions. 8.3. On centralizers of a group of automorphisms. 8.4. Covers and fibrations. 8.5. Geometric remarks. Notations. References. Index.

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews