Orbitals in Chemistry

Orbitals in Chemistry

by Satoshi Inagaki (Editor)

Paperback(2010)

$519.00
Eligible for FREE SHIPPING
  • Want it by Wednesday, October 24  Order now and choose Expedited Shipping during checkout.

Overview

Orbitals in Chemistry by Satoshi Inagaki

Molecular properties and reactions are controlled by electrons in the molecules. Electrons had been thought to be particles. Quantum mechanics showed that el- trons have properties not only as particles but also as waves. A chemical theory is required to think about the wave properties of electrons in molecules. These prop- ties are well represented by orbitals, which contain the amplitude and phase ch- acteristics of waves. This volume is a result of our attempt to establish a theory of chemistry in terms of orbitals — A Chemical Orbital Theory. The amplitude of orbitals represents a spatial extension of orbitals. An orbital strongly interacts with others at the position and in the direction of great extension. Orbital amplitude controls the reactivities and selectivities of chemical reactions. In the first paper on frontier orbital theory by Fukui the amplitude appeared in the form of its square, i.e., the density of frontier electrons in 1952 (Scheme 1). Orbital mixing rules were developed by Libit and Hoffmann and by Inagaki and Fukui in 1974 and Hirano and Imamura in 1975 to predict magnitudes of orbital amplitudes (Scheme 2) for understanding and designing stereoselective reactions.

Product Details

ISBN-13: 9783642261916
Publisher: Springer Berlin Heidelberg
Publication date: 02/25/2012
Series: Topics in Current Chemistry , #289
Edition description: 2010
Pages: 320
Product dimensions: 6.10(w) x 9.25(h) x 0.03(d)

Table of Contents

S. Inagaki: Elements of a Chemical Orbital Theory.- S. Inagaki: A Mechanistic Spectrum of Chemical Reactions.- S. Inagaki: Orbital Mixing Rule.- S. Inagaki: An Orbital Phase Theory.- T. Ohwada: Orbital Phase Environments and Stereoselectivities.- M. Ishida, S. Inagaki: p-Facial Selectivitiy of Diels-Alder Reactions.- J. Ma, S. Inagaki, Y. Wang: Orbital Phase Design of Diradicals.- Y. Naruse, S. Inagaki: Relaxation of Ring Strains.- S. Inagaki: Orbitals in Inorganic Chemistry: Metal Rings and Clusters, Hydronitrogens, and Heterocycles.-

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews