Paperback(Softcover reprint of the original 2nd ed. 1998)

$149.00
View All Available Formats & Editions
Eligible for FREE SHIPPING
  • Get it by Tuesday, June 26 , Order now and choose Expedited Delivery during checkout.

Overview

Physics of New Materials by Francisco E. Fujita

Physics of New Materials After the discoveries and applications of superconductors, new ceramics, amorphous and nano-materials, shape memory and other intelligent materials, physics became more and more important, comparable with chemistry, in the research and development of advanced materials. In this book, several important fields of physics-oriented new-materials research and physical means of analyses are selected and their fundamental principles and methods are described in a simple and understandable way. It is suitable as a textbook for university materials science courses.

Product Details

ISBN-13: 9783642468643
Publisher: Springer Berlin Heidelberg
Publication date: 03/17/2012
Series: Springer Series in Materials Science , #27
Edition description: Softcover reprint of the original 2nd ed. 1998
Pages: 318
Product dimensions: 6.10(w) x 9.25(h) x 0.03(d)

Table of Contents

1 Introductory Survey.- 1.1 New Materials and Necessity of Physics in their Development.- 1.2 Examples of Physics of New Materials.- 1.3 Brief Introduction of the Contents.- References.- 2 Electronic Structure and Properties of Transition Metal Systems.- 2.1 Background.- 2.2 Basic Concepts of Electronic Structure Calculation of Transition Metal Systems.- 2.2.1 Method of Calculation.- 2.2.2 s-d Mixing.- 2.3 Bulk and Defect Electronic Structure of Ferromagnetic Transition Metal Systems.- 2.3.1 Calculation for Periodic Systems.- 2.3.2 Impurities.- 2.3.3 Disordered Alloys.- 2.3.4 Failure of the ab initio Calculation.- 2.3.5 Enhancement of Ferromagnetism in Iron by Nonmagnetic Atoms.- 2.4 Structural Problems.- 2.4.1 Methods of Calculating Phase Diagram of Alloy Systems.- 2.4.2 Ordering on fcc Lattice.- 2.4.3 Examples of ab initio Calculations.- 2.4.4 Lattice Distortion.- 2.5 Limitation of the One Electron Theory.- 2.6 Future Development.- References.- 3 Structure Characterization of Solid-State Amorphized Materials by X-Ray and Neutron Diffraction.- 3.1 New Generation Scattering Experiments.- 3.2 Mechanical Alloying and Mechanical Disordering.- 3.2.1 Mechanical Amorphization of Ni-V Miscible System.- 3.2.2 Mechanical Amorphization of Cu-Ta and Cu-V Immissible Systems.- 3.3 Medium-Range Structure of Metallic Amorphous Alloys.- 3.3.1 Pre-peak in the Structure Factor of Binary Amorphous Alloys.- 3.3.2 Chemical Frustration in Ternary Amorphous Alloys.- 3.4 Conversion of Organic Polymers to Amorphous Ceramics.- 3.5 Hydrogen-Induced Amorphization.- References.- 4 Nanophase Materials: Synthesis, Structure, and Properties.- 4.1 Background.- 4.2 Synthesis and Processing.- 4.3 Structure and Stability.- 4.3.1 Grains and Pores.- 4.3.2 Grain Boundaries.- 4.3.3 Grain Size Stability.- 4.4 Properties.- 4.4.1 Chemical Properties.- 4.4.2 Mechanical Properties.- 4.4.3 Physical Properties.- 4.5 Future Directions.- References.- 5 Intercalation Compounds of Transition-Metal Dichalcogenides.- 5.1 Background.- 5.2 Electronic Band Structures of 3d Transition-Metal Intercalated Compounds of 1T—Type TiS2.- 5.2.1 Nonmagnetic States.- 5.2.2 Ferromagnetic States.- 5.2.3 Comparison with Experimental Results.- 5.3 Bonding Nature in Mx
TiS2 (M: 3d Transition-Metal).- 5.4 Electronic Band Structures of AgxTiS2.- 5.5 2H—Type TX2 (T = Nb, Ta; X = S, Se) Intercalated with Transition-Metals.- 5.6 Discussion.- References.- 6 Structural Phase Transformation.- 6.1 General View.- 6.1.1 Discoveries of Phase Transformations.- 6.1.2 Continuous and Discontinuous Transformation.- 6.1.3 Various Types of Phase Transitions.- 6.2 A Phenomenological Theory and a Statistical View of Phase Transition.- 6.2.1 Degree of Order and Landau’s Formulation of Phase Transition.- 6.2.2 Ehrenfest’s Criterion and Landau’s Picture in the G—T—? Diagram.- 6.2.3 Fine Heterogeneous Structure in the First Order Transition.- 6.2.4 Statistical Calculation of Embryonic Structure.- 6.3 Martensitic Transformation of Metals and Alloys.- 6.3.1 Martensitic Transformation of Steel.- 6.3.2 Lattice Deformation in Martensitic Transformation.- 6.3.3 Martensitic Transformation of ?-Phase Alloys.- 6.4 Shape Memory Effect and Premartensitic Phenomena.- 6.4.1 Mechanism of Shape Memory.- 6.4.2 Superplasticity and Ferroelasticity.- 6.4.3 Lattice Softening and Soft Phonon Mode.- 6.4.4 Premartensitic Structure and its Statistical Thermodynamic Theory.- 6.5 Martensite and Other Problems in Ceramics.- 6.5.1 Martensitic Transformation of Zirconia.- 6.5.2 P—T Phase Diagram and Artificial Diamond.- 6.5.3 CVD Diamond.- 6.6 Conclusions.- References.- 7 The Place of Atomic Order in the Physics of Solids and in Metallurgy.- 7.1 Historical Development.- 7.1.1 Superlattices.- 7.1.2 Imperfect Long-Range Order.- 7.1.3 Critical Phenomena.- 7.2 Antiphase Domains.- 7.2.1 Varieties of Domains.- 7.3 Theory of Ordering.- 7.3.1 The Ordering Energy.- 7.3.2 The Cluster Variation Model.- 7.3.3 “Criticality-Physics”.- 7.3.4 Prediction of Phase Diagrams.- 7.3.5 Prediction of Crystal Structures.- 7.3.6 First-Principles Calculations.- 7.4 Special Experimental Methods.- 7.5 Ordering Kinetics and Disorder Trapping.- 7.5.1 Disorder Trapping.- 7.5.2 Phases with Low Critical Temperatures.- 7.5.3 Rapidly Ordering Phases.- 7.6 Computer Simulation of Ordering and Disordering and Related Features.- 7.7 Ordering and Disordering at Free Surfaces, Interfaces and at Antiphase Domain Boundaries.- 7.7.1 Free Surfaces.- 7.7.2 Interfaces.- 7.8 Magnetic and Atomic Order.- 7.8.1 Directional Order.- 7.9 Ordering in Semiconductors and Other Non-Metals.- 7.9.1 Minerals.- 7.9.2 Semiconductors.- 7.9.3 Superconductors.- 7.9.4 Constitutional Vacancies.- 7.9.5 Plastic Crystals.- 7.10 Order and Mechanical Properties.- 7.11 Conclusion.- 7.12 Addendum.- References.- 8 Usefulness of Electron Microscopy.- 8.1 Background.- 8.2 Principles of Image Formation.- 8.2.1 Diffraction Contrast Imaging.- 8.2.2 Phase Contrast Imaging.- 8.3 High-Resolution Electron Microscopy.- 8.3.1 Weak-Beam Electron Microscopy.- 8.3.2 High-Resolution Images with Phase Contrast.- 8.4 Indispensable Applications of HVEMy.- 8.4.1 Quick Response of Lattice Defects to Applied Conditions.- 8.4.2 Direct Observation of Co-operative Actions among more than Two Factors in Material Behaviour by the in situ Experiment.- 8.5 New Research Fields by HVEMy “Micro-Laboratory”.- 8.6 Conclusions.- References.- 9 Mössbauer Spectroscopy in Materials Science.- 9.1 Historical Remarks.- 9.2 Principles.- 9.3 Hyperfine Interaction.- 9.4 Polarization and Thickness Effects.- 9.5 Phase Analysis.- 9.6 Cu-Fe System.- 9.7 Precision Phase Analysis.- 9.8 Amorphous Metals, General.- 9.9 Amorphous Metals, Experimental.- 9.10 Nanocrystalline Materials.- 9.11 Crystallization.- 9.12 Simultaneous Triple-Radiation Mössbauer Spectroscopy (STRMS).- 9.13 Quo Vadis?.- References.- 10 Further Progress.- 10.1 Eelectronic Structure and Magnetism of Transition Metal Systems.- 10.2 Structure Characterization of Solid-State Amorphized Materials by X-Ray and Neutron Diffraction.- 10.3 Recent Progress in Nanophase Materials.- 10.4 Further Progress in the Theory of Intercalation Compounds.- 10.5 Various New-type Carbon Materials.- 10.6 New Findings in Ordered Structures.- 10.7 Recent Developments in High-Resolution and High-Voltage Electron Microscopy.- 10.8 New Directions in Mössbauer Spectroscopy.

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews