Power System Protection

Power System Protection

by Paul Anderson

Other Format

$124.95
MARKETPLACE
3 New & Used Starting at $21.88

Overview

Bulletproof any electric power system! Whether you design,modify,or maintain power systems,make Power System Protection by P. M. Anderson your first line of defense. This nuts-and-bolts resource gives you proven techniques to protect your power generators and grid from any malfunction—from overload to lightning strikes to line disturbances and beyond. It gives you the skills and station-tested know-how to troubleshoot existing problems—and vital clues and red flags to stop mishaps before they begin. You'll easily configure and fine-tune every type of protective relay. . . properly insulate lines from corona disturbance. . . protect transformers from incipent faults and harmonic distortion. . . save generators from overheating and over-current damage. . . and more. Plus,you'll see how to expertly perform reliability analysis using block diagrams,success trees,truth tables,and minimal cut and minimal path sets. What's more,you'll get fast,at-a-glance data on protection terminology,protective device classification,overhead line impedances,transformer data and more.

Product Details

ISBN-13: 9780071343237
Publisher: McGraw-Hill Companies, The
Publication date: 11/28/1998
Pages: 1305
Product dimensions: 8.54(w) x 10.36(h) x 2.61(d)

Table of Contents

Preface xxi(2)
Acknowledgments xxiii(2)
List of Symbols
xxv
PART I PROTECTIVE DEVICES AND CONTROLS 1(198)
Chapter 1 Introduction
3(14)
1.1 Power System Protection
3(1)
1.2 Prevention and Control of System Failure
4(4)
1.2.1 Reactionary Devices
4(2)
1.2.2 Safeguard Devices
6(1)
1.2.3 Protective Device Operation
7(1)
1.3 Protective System Design Considerations
8(1)
1.4 Definitions Used In System Protection
9(2)
1.5 System Disturbances
11(1)
1.6 The Book Contents
12(2)
References
14(1)
Problems
14(3)
Chapter 2 Protection Measurements and Controls
17(26)
2.1 Graphic Symbols and Device Identification
17(1)
2.2 Typical Relay Connections
18(3)
2.3 Circuit Breaker Control Circuits
21(2)
2.4 Instrument Transformers
23(11)
2.4.1 Instrument Transformer Selection
23(5)
2.4.2 Instrument Transformer Types and Connections
28(6)
2.5 Relay Control Configurations
34(2)
2.6 Optical Communications
36(3)
References
39(1)
Problems
40(3)
Chapter 3 Protective Device Characteristics
43(54)
3.1 Introduction
43(1)
3.2 Fuse Characteristics
44(12)
3.2.1 Distribution Fuse Cutouts
44(2)
3.2.2 Fuse Types
46(2)
3.2.3 Fuse Time-Current Characteristics
48(3)
3.2.4 Fuse Coordination Charts
51(5)
3.3 Relay Characteristics
56(21)
3.3.1 Relay Types
56(3)
3.3.2 Electomechanical Relay Characteristics
59(7)
3.3.3 Static Relay Characteristics
66(4)
3.3.4 Differential Relays
70(1)
3.3.5 Digital Relays
71(6)
3.4 Power Circuit Breakers
77(7)
3.4.1 Circuit Breaker Definitions
77(2)
3.4.2 Circuit Breaker Ratings
79(3)
3.4.3 Circuit Breaker Design
82(5)
3.5 Automatic Circuit Reclosers
84(5)
3.5.1 Recloser Ratings
85(1)
3.5.2 Recloser Time-Current Characteristics
85(4)
3.6 Automatic Line Sectionalizers
89(1)
3.7 Circuit Swithchers
90(1)
3.8 Digital Fault Recorders
91(2)
References
93(2)
Problems
95(2)
Chapter 4 Relay Logic
97(50)
4.1 Introduction
97(1)
4.2 Electromechanical Relay Logic
98(1)
4.2.1 The Overcurrent Relay
98(1)
4.2.2 The Distance Relay
98(1)
4.3 Electronic Logic Circuits
99(13)
4.3.1 Analog Logic Circuits
99(5)
4.3.2 Digital Logic Circuits
104(8)
4.4 Analog Relay Logic
112(3)
4.4.1 An Instantanceous Overcurrent Relay
112(1)
4.4.2 A Phase Comparison Distance Relay
112(2)
4.4.3 A Directional Comparison Pilot Relay
114(1)
4.4.4 Conclusions Regarding Solid State Analog Logic
115(1)
4.5 Digital Relay Logic
115(11)
4.5.1 Digital Signal Processing
116(4)
4.5.2 The Data Window Method
120(1)
4.5.3 The Phasor Method
121(2)
4.5.4 Digital Relaying Applications
123(2)
4.5.5 Example of a Digital Relay System
125(1)
4.6 Hybrid Relay Logic
126(1)
4.7 Relays as Comparators
127(12)
4.7.1 Relay Design
127(1)
4.7.2 Phase and Amplitude Comparison
128(1)
4.7.3 The Alpha and Beta Planets
129(1)
4.7.4 The General Comparator Equations
129(3)
4.7.5 The Amplitude Comparator
132(1)
4.7.6 The Phase Comparator
133(2)
4.7.7 Distance Relays as Comparators
135(2)
4.7.8 General Beta Plane Characteristics
137(2)
References
139(4)
Problems
143(4)
Chapter 5 System Characteristics
147(52)
5.1 Power System Faults
147(13)
5.1.1 System Fault Characteristics
148(4)
5.1.2 Fault Currents Near Synchronous Machines
152(7)
5.1.3 Saturation of Current Transformers
159(1)
5.2 Station Arrangements
160(7)
5.2.1 Single Bus, Single Breaker Arrangement
160(1)
5.2.2 Main and Transfer Arrangement
161(1)
5.2.3 Double Bus, Single Breaker Arrangement
162(1)
5.2.4 Double Bus, Double Breaker Arrangement
163(1)
5.2.5 Ring Bus Arrangement
163(1)
5.2.6 Breaker-and-a-Half Arrangement
164(1)
5.2.7 Other Switching Arrangements
164(3)
5.3 Line Impedances
167(1)
5.4 Computation of Available Fault Current
168(4)
5.4.1 Three Phase (3PH) Faults
169(1)
5.4.2 Double Line-to-Ground (2-LG) Faults
170(1)
5.4.3 Line-to-Line (L-L) Fault
171(1)
5.4.4 One-Line-to-Ground (ILG) Fault
171(1)
5.4.5 Summary of Fault Currents
172(1)
5.5 System Equivalent for Protection Studies
172(14)
5.5.1 The Open-Circuit Impedance Matrix
173(1)
5.5.2 Computation of the Two-Port Representation
174(2)
5.5.3 A Simple Two-Port Equivalent
176(1)
5.5.4 Tests of the Equivalent Circuit
177(1)
5.5.5 System Equivalent from Two-Port Parameters
178(1)
5.5.6 Equivalent of a Line with Shunt Faults
178(1)
5.5.7 Applications of the Equivalent to Series Faults
179(3)
5.5.8 Conclusions Regarding Two-Port Equivalents
182(1)
5.5.9 Multiport Equivalents
183(3)
5.6 The Compensation Theorem
186(3)
5.6.1 Network Solution Before Changing Y(3)
186(1)
5.6.2 Network Solution After Changing Y(3)
187(1)
5.6.3 The Incremental Change in Current and Voltage
187(2)
5.6.4 The Compensation Theorem in Fault Studies
189(1)
5.7 Compensation Applications In Fault Studies
189(4)
5.7.1 Prefault Conditions
189(1)
5.7.2 The Faulted Network Condition
190(1)
5.7.3 The Fault Conditions Without Load Currents
191(1)
5.7.4 Summary of Load and Fault Conditions
192(1)
References
193(1)
Problems
194(5)
PART II PROTECTION CONCEPTS 199(178)
Chapter 6 Fault Protection of Redial Line
201(48)
6.1 Radial Distribution Systems
201(1)
6.2 Radial Distribution Coordination
202(5)
6.2.1 Supply System Information
202(1)
6.2.2 Distribution Substation Information
202(3)
6.2.3 Distribution System Information
205(1)
6.2.4 Protective Equipment Information
205(2)
6.2.5 Step-by-Step Study Procedure
207(1)
6.3. Radial Line Fault Current Calculations
207(11)
6.3.1 General Considerations for Radial Faults
208(1)
6.3.2 Main Line Feeder Faults
208(7)
6.3.3 Branch Line Faults
215(3)
6.4. Radial System Protective Strategy
218(2)
6.4.1 Clearing Temporary Faults
218(1)
6.4.2 Isolating Permanent Faults
219(1)
6.5 Coordination of Protective Devices
220(5)
6.5.1 Recloser-Fuse Coordination
220(3)
6.5.2 Recloser-Relay Coordination
223(2)
6.6 Relay Coordination on Radial Lines
225(15)
6.6.1 Coordination Procedure
226(2)
6.6.2 Procedure for Phase and Ground Relays
228(7)
6.6.3 Procedure for Instantaneous Relay Settings
235(5)
References
240(1)
Problems
240(9)
Chapter 7 Introduction to Transmission Protection
249(34)
7.1 Introduction
249(1)
7.2 Protection with Overcurrent Relays
250(7)
7.2.1 Loops with One Current Source
252(2)
7.2.2 Loops with Multiple Current Sources
254(3)
7.3 Distance Protection of Lines
257(11)
7.3.1 Distance Relay Characteristics
257(5)
7.3.2 Zoned Distance Relays
262(3)
7.3.3 Effect of Fault Resistance
265(2)
7.3.4 Summary of Distance Relay Concepts
267(1)
7.4 Unit Protection
268(2)
7.5 Ground Fault Protection
270(7)
7.5.1 Importance of Ground Fault Protection
270(1)
7.5.2 Unique Characteristics of Ground Faults
271(1)
7.5.3 Polarization of Ground Relays
272(4)
7.5.4 Types of Ground Relays
276(1)
7.6 Summary
277(1)
References
278(1)
Problems
278(5)
Chapter 8 Complex Loci in the Z and Y Planes
283(34)
8.1 The Inverse Z Transformation
284(2)
8.2 Line and Circle Mapping
286(7)
8.2.1 The Half Z Plane: a = c = o
287(2)
8.2.2 The Half Z Plane is less than equal to -k(2)
289(1)
8.2.3 The Half Plane a = b = 0
290(1)
8.2.4 The Half Plane a = O
291(1)
8.2.5 The Half Plane d = O
292(1)
8.3 The Complex Equation of a Line
293(1)
8.4 The Complex Equation of a Circle
294(2)
8.5 Inversion of an Arbitrary Admittance
296(3)
8.5.1 Inversion of Y with Y(k) Constant and Psi Variable
297(1)
8.5.2 Inversion of Y with Psi Constant and Y(k) Variable
298(1)
8.5.3 Summary of Y Inversion Equations
299(1)
8.6 Inversion of a Straight Line Through (1.0)
299(2)
8.7 Inversion of an Arbitrary Straight Line
301(1)
8.8 Inversion of a Circle with Center at (1,0)
302(2)
8.9 Inversion of a Arbitrary Circle
304(3)
8.10 Summary of Line and Circle Inversions
307(1)
8.11 Angle Preservation in Conformal Mapping
307(1)
8.12 Orthogonal Trajectories
308(4)
8.13 Impedance at the Relay
312(2)
References
314(1)
Problems
314(3)
Chapter 9 Impedance at the Relay
317(38)
9.1 The Relay Impedance, Z(R)
317(2)
9.2 Protection Equivalent M Parameters
319(3)
9.2.1 Network Test with E(U) Shorted
320(1)
9.2.2 Network Test with E(S) Shorted
321(1)
9.3 The Circle Loci Z = P/(1 + Y(k))
322(1)
9.4 Z(R) Loci Construction
323(6)
9.4.1 k Circles
324(2)
9.4.2 Psi Circles
326(3)
9.5 Relay Apparent Impedance
329(7)
9.5.1 The Unfaulted System
330(2)
9.5.2 ABCD Parameters for a Faulted System
332(4)
9.6 Relay Impedance for a Special Case
336(4)
9.7 Construction of M Circles
340(4)
9.7.1 Short-Circuit Test with E(U) Shorted
341(1)
9.7.2 Short-Circuit Test with E(S) Shorted
342(1)
9.7.3 Summary of Short-Circuit Test Results
343(1)
9.8 Phase Comparison Apparent Impedance
344(5)
References
349(1)
Problems
350(5)
Chapter 10 Admittance at the Relay
355(22)
10.1 Admittance Diagrams
355(1)
10.2 Input Admittance Loci
356(3)
10.2.1 Y(I) Loci for Constant m
357(1)
10.2.2 Y(I) Loci For Constant Psi
358(1)
10.3 The Relay Admittance Characteristics
359(5)
10.4 Parallel Transmission Lines
364(4)
10.6 Typical Admittance Plane Characteristics
368(3)
10.7 Summary of Admittance Characteristics
371(1)
References
372(1)
Problems
372(5)
PART III TRANSMISSION PROTECTION 377(266)
Chapter 11 Analysis of Distance Protection
379(40)
11.1 Introduction
379(1)
11.2 Analysis of Transmission Line Faults
380(14)
11.2.1 Sequence Network Reduction
381(1)
11.2.2 Phase Faults at F
382(7)
11.2.3 Ground Faults at F
389(5)
11.3 Impedance at the Relay
394(12)
11.3.1 Relay Impedances for Phase Faults with C(1) Not equal to C(2)
394(3)
11.3.2 Relay Impedances for Ground Faults with C(i) Not equal to C(2)
397(1)
11.3.3 Relay Impedances when C(1) = C(2)
398(2)
11.3.4 Apparent Relay Impedance Plots
400(6)
11.4 Distance Relay Settings
406(4)
11.5 Ground Distance Protection
410(2)
11.6 Distance Relay Coordination
412(2)
References
414(1)
Problems
415(4)
Chapter 12 Transmission Line Mutual Induction
419(50)
12.1 Introduction
419(1)
12.2 Line Impedances
420(10)
12.2.1 Self-and Mutual Impedance
420(3)
12.2.2 Estimation of Mutually Coupled Voltages
423(1)
12.2.3 Example of Transmission Line Impedances
424(6)
12.3 Effect of Mutual Coupling
430(7)
12.3.1 Selecting a Reference Phasor
431(1)
12.3.2 Transmission System Without Mutual Coupling
431(2)
12.3.3 Transmission System With Mutual Coupling
433(2)
12.3.4 Other Examples of Mutual Coupling
435(2)
12.4 Short Transmission Line Equivalents
437(8)
12.4.1 General Network Equivalents for Short Lines
437(2)
12.4.2. Type 1 Networks
439(3)
12.4.3 Type 2 Networks
442(1)
12.4.4 Type 3 Networks
442(1)
12.4.5 Lines with Appreciable Susceptance
443(1)
12.4.6 Other Network Equivalents
444(1)
12.5 Long Transmission Lines
445(8)
12.5.1 The Isolated Long Transmission Line
445(2)
12.5.2 Mutually Coupled Long Transmission Lines
447(6)
12.6 Long Transmission Line Equivalents
453(8)
12.6.1 Reciprocity and the Admittance Matrix
453(4)
12.6.2 The Long Line Type 3 Network Equivalent
457(2)
12.6.3 Long-Line Type 1 Network Equivalents
459(1)
12.6.4 Long-Line Type 2 Network Equivalents
460(1)
12.7 Solution of the Long-Line Case
461(4)
12.7.1 Determination of the Sequence Impedances
463(1)
12.7.2 Computation of Sequence Voltages and Currents
464(1)
References
465(1)
Problems
466(3)
Chapter 13 Pilot Protection Systems
469(62)
13.1 Introduction
470(2)
13.2 Physical Systems for Pilot Protection
472(10)
13.2.1 General Concepts of Pilot Communications
473(2)
13.2.2 Wire Pilot Systems
475(2)
13.2.3 Power Line Carrier Pilot Systems
477(1)
13.2.4 Microwave Pilot Systems
478(1)
13.2.5 Fiber-Optic Pilot Systems
479(1)
13.2.6 Guidelines for Pilot Communications Selection
480(1)
13.2.7 Pilot Communications Problems
480(1)
13.2.8 Pilot Protection Classifications
481(1)
13.3 Non-Unit Pilot Protection Schemes
482(17)
13.3.1 Directional Comparison Schemes
482(1)
13.3.2 Distance Schemes
482(2)
13.3.3 Transfer Trip Piolt Protection
484(5)
13.3.4 Blocking and Unblocking Pilot Protection
489(4)
13.3.5 Selectivity in Directional Comparison Systems
493(1)
13.3.6 Other Features of Directional Comparison
494(1)
13.3.7 Hybrid Schemes
495(4)
13.4 Unit Protection Pilot Schemes
499(10)
13.4.1 Phase Comparison Schemes
499(8)
13.4.2 Longitudinal Differential Schemes
507(2)
13.5 An Example of Extra High Voltage Line Protection
509(6)
13.5.1 Considerations in EHV Protection
509(1)
13.5.2 Description of the EHV Pilot Protection
510
13.6 Pilot Protection Settings
515(7)
13.6.1 Instrument Transformer Settings
516(1)
13.6.2 Maximum Torque Angle
516(1)
13.6.3 Distance Element Reach and Time Delay
516(1)
13.6.4 Phase Overcurrent Element Settings
517(1)
13.6.5 Residual Overcurrent Element Settings
518(1)
13.6.6 Switch-Onto-Fault Logic
519(1)
13.6.7 Current Reversal Logic and Timers
519(1)
13.6.8 Echo Keying
520(1)
13.7.9 Weak Infeed Logic and Settings
521(1)
13.7.10 Loss of Potential Logic
521(1)
13.7.11 Conclusions Regarding Pilot Protection Settings
521(1)
13.7 Traveling Wave Relays
522(3)
13.8 Monitoring of Pilot Performance
525(2)
References
527(2)
Problems
529(2)
Chapter 14 Complex Transmission Protection
531(44)
14.1 Introduction
531(1)
14.2 Single-Phase Switching of EHV Lines
531(8)
14.2.1 Control of Secondary Arcs in Transposed Lines
532(4)
14.2.2 Secondary Arcs in Untransposed EHV Lines
536(3)
14.3 Protection of Multiterminal Lines
539(8)
14.3.1 Distance Protection for a Three-Terminal Line
542(3)
14.3.2 Pilot Protection for a Three-Terminal Line
545(2)
14.4 Protection of Mutually Coupled Lines
547(23)
14.4.1 Mutual Coupling of Parallel Lines
547(1)
14.4.2 Ground Distance Protection of Type 1 Networks
548(20)
14.4.3 Distance Protection of Type 2 Networks
568(2)
14.4.4 Distance Protection of Type 3 Networks
570(1)
References
570(2)
Problems
572(3)
Chapter 15 Series-Compensated Line Protection
575(68)
15.1 Introduction
575(3)
15.1.1 The Degree of Compensation
576(1)
15.1.2 Voltage Profile on Series Compensated Lines
577(1)
15.2 Faults with Unbypassed Series Capacitors
578(12)
15.2.1 End-of-Line Capacitors-Bus Side Voltage
578(7)
15.2.2 End-of-Line Capacitors-Line Side Voltage
585(1)
15.2.3 Capacitors at the Center of the Line
586(3)
15.2.4 Conclusions on Series Compensation Effects
589(1)
15.3 Series Capacitor Bank Protection
590(21)
15.3.1 Series Capacitor Bypass Systems
592(6)
15.3.2 A Fundamental Frequency Varistor Model
598(3)
15.3.3 Relay Quantities Including Varistor Bypass
601(3)
15.3.4 Effect of System Parameters
604(7)
15.4 Relay Problem due to Compensation
611(21)
15.4.1 The Effect of Transient Phenomena
611(2)
15.4.2 The Effect of Phase Impedeance Unbalance
613(1)
15.4.3 Subsynchronous Resonace Effects
613(1)
15.4.4 Voltage and Current Inversions
614(9)
15.4.5 Problems Due to Voltage Inversions
623(1)
15.4.6 Problems Due to Mutual Induction
624(1)
15.4.7 Problems in Reach Measurement
625(7)
15.5 Protection of Series Compensated Lines
632(3)
15.5.1 Current Phase Comparison
632(1)
15.5.2 Directional Comparison Schemes
632(3)
15.5.3 Directional Overcurrent Ground Protection
635(1)
15.6 Line Protection Experience
635(3)
15.6.1 The Effect of Transient Phenomena on Protection
636(1)
15.6.2 The Effect of Phase Impedance Unbalance
636(1)
15.6.3 The Effect of Voltage and Currect Inversion
636(1)
15.6.4 The Effect of Fault Locator Error
636(1)
15.6.5 The Effect of Transducer Error
637(1)
15.6.6 Autoreclosing of Transmission Lines
637(1)
15.6.7 Requirements for Protection System Studies
637(1)
15.6.8 General Experience with the Line Protection
637(1)
References
638(2)
Problems
640(3)
PART IV APPARATUS PROTECTION 643(162)
Chapter 16 Bus Protection
645(28)
16.1 Introduction
645(1)
16.2 Bus Faults
646(1)
16.3 Bus Protection Requirements
647(1)
16.4 Bus Protection by Backup Line Relays
648(1)
16.5 Bus Differential Protection
649(14)
16.5.1 Current Transformers for Bus Protection
649(1)
16.5.2 Differential Protection Concepts and Problems
650(3)
16.5.3 Differential Protection with Overcurrent Relays
653(2)
16.5.4 Bus Protection with Percent Differential Relays
655(1)
16.5.5 Bus Differential Protection with Linear Couplers
655(2)
16.5.6 High-Impendance Bus Differential Protection
657(1)
16.6 Other Types of Bus Protection
663(6)
16.6.1 Fault Bus Protection
663(1)
16.6.2 Combined Bus and Transformer Protection
664(1)
16.6.3 Bus Protection Using Auxiliary CTs
664(5)
16.6.4 Directional Comparison Bur Protection
669(1)
16.7 Auxiliary Tripping Relays
669(1)
16.7.1 Lockout Relays
670(1)
16.7.2 Non-Lockout Relays
670(1)
16.8 Summary
670(1)
References
670(1)
Problems
671(2)
Chapter 17 Transformer and Reactor Protection
673(40)
17.1 Introduction
673(1)
17.2 Transformer Faults
674(7)
17.2.1 External Faults
674(1)
17.2.2 Internal Faults
675(5)
17.2.3 Fault Protection Philosophy
680(1)
17.3 Magnetizing Inrush
681(3)
17.3.1 Magnetizing Current Magnitude
681(2)
17.3.2 Magnetizing Inrush Current Harmonics
683(1)
17.3.3 Sympathetic Inrush in Parallel Banks
684(1)
17.4 Protection Against Incipient Faults
684(3)
17.4.1 Protection against External Incipient Faults
684(2)
17.4.2 Protection against Internal Incipient Faults
686(1)
17.5 Protection against Active Faults
687(10)
17.5.1 Connections for Differential Protection
687(3)
17.5.2 Differential Protection of Transformers
690(5)
17.5.3 Overcurrent Protection of Transformers
695(1)
17.5.4 Ground Fault Protection of Transformers
696(1)
17.6 Combined Line and Transformer Schemes
697(2)
17.6.1 Non-Unit Protection Schemes
698(1)
17.6.2 Line and Transformer Unit Protection
698(1)
17.7 Regulating Transformer Protection
699(1)
17.8 Shunt Reactor Protection
700(4)
17.8.1 Dry Type Reactors
701(1)
17.8.2 Oil-Immersed Reactors
702(2)
17.9 Static VAR Compensator Protection
704(4)
17.9.1 A Typical SVC System
705(1)
17.9.2 SVC Protection Requirements
705(3)
References
708(1)
Problems
709(4)
Chapter 18 Generator Protection
713(38)
18.1 Introduction
713(1)
18.2 Types of Generator Protection
714(1)
18.3 Stator Protection
715(13)
18.3.1 Phase Fault Protection
716(1)
18.3.2 Ground Fault Protection
717(7)
18.3.3 Turn-to-Turn Fault Protection
724(1)
18.3.4 Stator Open-Circuit Protection
724(1)
18.3.5 Overheating Protection
725(1)
18.3.6 Overvoltage Protection
726(1)
18.3.7 Unbalanced Current Protection
726(2)
18.3.8 Backup Protection
728(1)
18.4 Rotor Protection
728(4)
18.4.1 Shorted Field Winding Protection
729(1)
18.4.2 Grounded Field Winding
729(2)
18.4.3 Open Field Winding
731(1)
18.4.4 Overheating of the Field Winding
731(1)
18.5 Loss of Excitation Protection
732(5)
18.5.1 Induction Generator Operation
732(1)
18.5.2 Loss of Field Protection
732(5)
18.6 Other Generator Protection Systems
737(3)
18.6.1 Overspeed Protection
737(1)
18.6.2 Generator Motoring Protection
737(1)
18.6.3 Vibration Protection
738(1)
18.6.4 Bearing Failure Protection
738(1)
18.6.5 Coolant Failure Protection
739(1)
18.6.6 Fire Protection
739(1)
18.6.7 Generator Voltage transformer Fuse Bolwing
739(1)
18.6.8 Protection of Power Plant Auxiliaries
739(1)
18.7 Summary of Generator Protection
740(5)
18.7.1 Unit Generator-Transformer Protection
740(2)
18.7.2 Unit Generator-Transformer Trip Modes
742(1)
18.7.3 Breaker Failure Protection of the Generator
743(2)
References
745(1)
Problems
746(5)
Chapter 19 Motor Protection
751(54)
19.1 Introduction
751(1)
19.2 Induction Motor Analysis
752(17)
19.2.1 Normalization of the Basic Equations
752(4)
19.2.2 Induction Motor Equivalent Circuits
756(5)
19.2.3 The Net Accelerating Torque
761(2)
19.2.4 Motor Electrical and Mechanical Performance
763(6)
19.3 Induction Motor Heating
769(13)
19.3.1 Heat Transfer Fundamentals
769(4)
19.3.2 A Motor-Thermal Model
773(9)
19.4 Motor Problems
782(6)
19.4.1 Motor Problems Due to Internal Hazards
782(1)
19.4.2 Motor Problems Due to External Hazards
783(5)
19.5 Classifications of Motors
788(2)
19.5.1 Motors Classified by Service
788(1)
19.5.2 Motors Classified by Location
789(1)
19.5.3 Summary of Motor Classification
790(1)
19.6 Stator Protection
790(6)
19.6.1 Phase Fault Protection
790(1)
19.6.2 Ground Fault Protection
791(1)
19.6.3 Locked Rotor Protection
791(1)
19.6.4 Overload Protection
792(1)
19.6.5 Undervoltage Protection
793(1)
19.6.6 Reversed Phase Rotation Protection
794(1)
19.6.7 Unbalanced Supply Voltage Protection
794(1)
19.6.8 Loss of Synchronism in Synchronous Motors
795(1)
19.6.9 Loss of Excitation in Synchronous Motors
795(1)
19.6.10 Sudden Supply Restoration Protection
795(1)
19.7 Rotor Protection
796(1)
19.7.1 Rotor Heating
796(1)
19.7.2 Rotor Protection Problems
796(1)
19.8 Other Motor Protections
797(1)
19.8.1 Bearing Protection
797(1)
19.8.2 Complete Motor Protection
797(1)
19.9 Summary of Large Motor Protections
798(1)
References
799(2)
Problems
801(4)
PART V SYSTEM ASPECTS OF PROTECTION 805(196)
Chapter 20 Protection Against Abnormal System Frequency
807(46)
20.1 Abnormal Frequency Operation
807(1)
20.2 Effects of Frequency on the Generator
808(2)
20.2.1 Over-Frequency Effects
808(1)
20.2.2 Under-Frequency Effects
808(2)
20.3 Frequency Effects on the Turbine
810(3)
20.3.1 Over-Frequency Effects
813(1)
20.3.2 Under-Frequency Effects
813(1)
20.4 A System Frequency Response Model
813(18)
20.4.1 Effect of Disturbance Size, P(step)
819(1)
20.4.2 Normalization
819(1)
20.4.3 Slope of the Frequency Response
820(1)
20.4.4 The Effect of Governor Droop, R
821(1)
20.4.5 The Effects of Intertia, H
822(1)
20.4.6 The Effect of Reheat Time Constant, T(R)
823(1)
20.4.7 The Effect of Reheat Time Constant, F(H)
823(2)
20.4.8 The Effect of Damping, D
825(1)
20.4.9 System Performance Analysis
825(1)
20.4.10 Use of the SFR Model
826(1)
20.4.11 Refinements in the SFR Model
827(2)
20.4.12 Other Frequency Response Models
829(1)
20.4.13 Conclusions Regarding Frequency Behavior
830(1)
20.5 Off Normal Frequency Protection
831(1)
20.6 Steam Turbine Frequency Protection
832(2)
20.7 Underfrequency Protection
834(13)
20.7.1 A Typical Turbine Protection Characteristic
834(1)
20.7.2 Load Shedding Relay Characteristics
835(11)
20.7.3 Load Shedding Relay Connections
846(1)
References
847(3)
Problems
850(3)
Chapter 21 Protective Schemes for Stability Enhancement
853(60)
21.1 Introduction
853(1)
21.2 Review of Stability Fundamentals
853(9)
21.2.1 Definition of Stability Fundamentals
853(1)
21.2.2 Power Flow Through an Impedance
854(1)
21.2.3 Two-Port Network Representation
855(3)
21.2.4 The Swing Equation
858(4)
21.3 System Transient Behavior
862(1)
21.3.1 Stability Test System
863(1)
21.3.2 Effect of Cirucit Breaker Speed
864(3)
21.3.3 Effect of Circuit Breaker Speed
867(1)
21.3.4 Effect of Reclosing
868(1)
21.3.5 Relay Measurements During Transients
868(5)
21.4 Automatic Reclosing
873(21)
21.4.1 The Need for Fast Reclosing
875(1)
21.4.2 Disturbance Considerations in Reclosing
875(2)
21.4.3 Reclosing Considerations
877(5)
21.4.4 Reclosing Relays
882(6)
21.4.5 Reclosing Switching Options
888(1)
21.4.6 Reclosing at Generator Buses
889(5)
21.5 Loss of Synchronization Protection
894(8)
21.5.1 System Out-of-Step Performance
894(3)
21.5.2 Out-of-Step Detection
897(1)
21.5.3 Out-of-Step Blocking and Tripping
898(3)
21.5.4 Circuit Breaker Considerations
901(1)
21.5.5 Pilot Relaying Consideration
901(1)
21.5.6 Out-of-Step Relaying Practice
901(1)
21.6 Special Protection Schemes
902(7)
21.6.1 SPS Characteristics
902(1)
21.6.2 Disturbance Events
903(1)
21.6.3 SPS Design Procedure
904(1)
21.6.4 Example of a Special Protection Scheme
905(4)
21.7 Summary
909(1)
References
909(2)
Problems
911(2)
Chapter 22 HVDC Protection
913(42)
22.1 Introduction
913(1)
22.2 DC Conversion Fundamentals
913(16)
22.2.1 Rectifier Operation
914(7)
22.2.2 Inverter Operation
921(3)
22.2.3 Multibridge Converters
924(2)
22.2.4 Basic HVDC Control
926(3)
22.3 Converter Station Design
929(7)
22.3.1 A Typical Converter Station
929(2)
23.3.2 HVDC Control Heirarchical Structure
931(3)
23.3.3 General Philosophy of HVDC Protection
934(2)
23.3.4 General Categories of HVDC Protection
936(1)
22.4 AC Side Protection
936(2)
22.4.1 AC Line Protection
936(1)
22.4.2 AC Bus Protection
937(1)
22.4.3 Converter Transformer Protection
937(1)
22.4.4 Filters and Reactive Support Protection
938(1)
22.5 DC Side Protection Overview
938(10)
22.5.1 Valve Protection
939(4)
22.5.2 Other DC Side Protective Functions
943(5)
22.6 Special HVDC Protections
948(3)
22.6.1 General Description
948(1)
22.6.2 Reverse Power Protection
949(1)
22.6.3 Torsional Interaction Protection
949(1)
22.6.4 Self-Excitation Protection
950(1)
22.6.5 Dynamic Overvoltage Protection
950(1)
22.7 HVDC Protection Settings
951(1)
22.8 Summary
952(1)
References
952(1)
Problems
953(2)
Chapter 23 SSR Protection
955(46)
23.1 Introduction
955(1)
23.2 SSR Overview
955(8)
23.2.1 Types of SSR Interactions
960(2)
23.2.2 A Brief History of SSR Phenomena
962(1)
23.3 SSR System Countermeasures
963(6)
23.3.1 Network and Generator Controls
964(4)
23.3.2 Generator and System Modifications
968(1)
23.4 SSR Unit Countermeasures
969(23)
23.4.1 Filtering and Damping
970(7)
23.4.2 Unit Relaying and Monitoring
977(15)
23.5 Summary
992(1)
References
993(5)
Problems
998(3)
PART VI RELIABILITY OF PROTECTIVE SYSTEMS 1001(248)
Chapter 24 Basic Reliability Concepts
1003(40)
24.1 Introduction
1003(1)
24.2 Probability Fundamentals
1004(6)
24.2.1 The Probability Axioms
1004(1)
24.2.2 Events and Experiments
1004(1)
24.2.3 Venn Diagrams
1005(1)
24.2.4 Classes and Partitions
1006(1)
24.2.5 Rules for Combining Probabilities
1007(3)
24.3 Randon Variables
1010(16)
24.3.1 Definition of a Random Variable
1010(1)
24.3.2 The Distribution Function
1011(1)
24.3.3 The Density Function
1011(1)
24.3.4 Discrete Distributions
1012(1)
24.3.5 Continuous Distributions
1013(1)
24.3.6 Moments
1014(1)
24.3.7 Common Distribution Functions
1015(8)
24.3.8 Randon Vectors
1023(1)
24.3.9 Stochastic Processes
1024(2)
24.3.10 Power System Disturbances
1026(1)
24.4 Failure Definitions and Failure Modes
1026(2)
24.4.1 Failure Definitions
1027(1)
24.4.2 Modes of Failure
1027(1)
24.5 Reliability Models
1028(12)
24.5.1 Definition of Reliability
1028(4)
24.5.2 The Repair Process
1032(2)
24.5.3 The Whole Process
1034(3)
24.5.4 Constant Failure and Repair Rate Model
1037(3)
References
1040(1)
Problems
1040(3)
Chapter 25 Reliability Analysis
1043(50)
25.1 Reliability Block Diagrams
1043(9)
25.1.1 Series Systems
1044(2)
25.1.2 Parallel Systems
1046(1)
25.1.3 Series-Parallel and Parallel-Series Systems
1047(1)
25.1.4 Standby Systems
1048(1)
25.1.5 Bridge Networks
1049(1)
25.1.6 Cut Sets
1050(2)
25.2 Fault Trees
1052(12)
25.2.1 Fault Tree Conventions
1053(1)
25.2.2 System Analysis Methods
1054(1)
25.2.3 System Components
1055(1)
25.2.4 Component Failures
1055(2)
25.2.5 Basic Fault Tree Construction
1057(3)
25.2.6 Decision Tables
1060(2)
25.2.7 Signal Flow Graphs
1062(2)
25.3 Reliability Evaluation
1064(7)
25.3.1 Qualitative Analysis
1064(3)
25.3.2 Qualitative Analysis
1067(4)
25.4 Other Analytical Methods
1071(8)
25.4.1 Reliability Block Diagrams
1072(1)
25.4.2 Success Trees
1073(1)
25.4.3 Truth Tables
1074(2)
25.4.4 Structure Functions
1076(2)
25.4.5 Minimal Cut Sets
1078(1)
25.4.6 Minimal Path Sets
1078(1)
25.5 State Space and Markov Processes
1079(8)
25.5.1 The Markov Process
1079(2)
25.5.2 Stationary State Probabilities
1081(1)
25.5.3 General Alogorithm for Markov Analysis
1082(2)
25.5.4 Model of Two Repairable Components
1084(1)
25.5.5 Markov Models with Special Failure Modes
1085(1)
25.5.6 Failure Frequency and Duration
1085(2)
References
1087(1)
Problems
1088(5)
Chapter 26 Reliability Concepts in System Protection
1093(64)
26.1 Introduction
1093(1)
26.2 System Disturbances Models
1093(17)
26.2.1 A Probabilistic Disturbance Model
1093(3)
26.2.2 Disturbance Distribution
1096(1)
26.2.3 Disturbance Classifications
1097(2)
26.2.4 Probabilistic Model of Disturbances
1099(5)
26.2.5 Disturbance Joint Probability Density
1104(1)
26.3 Time-Independent Reliability Models
1104(38)
26.3.1 The Protection and the Protected Component
1105(1)
26.3.2 System Reliability Concepts
1106(7)
26.3.3 Coherent Protection Logic
1113(12)
26.3.4 Protective System Analysis
1125(13)
26.3.5 Specifications for Transmission Protection
1138(4)
26.4 Time-Dependent Reliability Models
1142(10)
26.4.1 Failure Distributions of Random Variables
1143(5)
26.4.2 Composite Protection System
1148(4)
References
1152(1)
Problems
1153(4)
Chapter 27 Fault Tree Analysis Protective Systems
1157(48)
27.1 Introduction
1157(1)
27.2 Fault Tree-Analysis
1158(11)
27.2.1 System Nomenclature
1159(1)
27.2.2 Calculation of Component Prameters
1159(4)
27.2.3 Computation of Minimal Cut Set Parameters
1163(2)
27.2.4 Computation of System Parameters
1165(4)
27.3 Analysis of Transmission Protection
1169(24)
27.3.1 Functional Specification for the Protective System
1169(4)
27.3.2 The Top Event
1173(2)
27.3.3 Failure of the Circuit Breakers
1175(5)
27.3.4 Protective System Failure
1180(13)
27.4 Fault Tree Evaluation
1193(8)
27.4.1 Breaker Failure Evaluation
1193(2)
27.4.2 Protective System Failure Evaluation
1195(3)
27.4.3 Determination of Minimal Cut Sets
1198(1)
27.4.4 Constant Failure Rate--Special Cases
1199(2)
References
1201(1)
Problems
1201(4)
Chapter 28 Markov Modeling of Protective Systems
1205(44)
28.1 Introduction
1205(1)
28.2 Testing of Protective Systems
1206(5)
28.2.1 The Need for Testing
1208(2)
28.2.2 Reliability Modeling of Inspection
1210(1)
28.3 Modeling of Inspected Systems
1211(15)
28.3.1 Optimal Inspection Interval
1212(5)
28.3.2 Optimization for Redundant Systems
1217(3)
28.3.3 Optimal Design of k-out-of-n: G Systems
1220(6)
28.4 Monitoring and Self Testing
1226(4)
28.4.1 Monitoring Techniques
1226(1)
28.4.2 Self-Checking Techniques
1227(1)
28.4.3 Monitoring and Self-Checking Systems
1228(1)
28.4.4 Automated Testing
1229(1)
28.5 The Unreadiness Probability
1230(3)
28.6 Protection Abnormal Unavailability
1233(8)
28.6.1 Assumptions
1234(7)
28.7 Evaluation of Safeguard Systems
1241(4)
28.7.1 Definitions and Assumptions
1242(1)
28.7.2 The Unconditional Hazard Rate
1243(1)
28.7.3 Expected Number of Failures
1243(2)
References
1245(2)
Problems
1247(2)
APPENDICES 1249(46)
Appendix A Protection Terminology 1249(10)
A.1 Protection Terms and Definitions 1249(1)
A.2 Relay Terms and Definitions 1250(3)
A.3 Classification of Relay Systems 1253(2)
A.4 Circuit Breaker Terms and Definitions 1255(3)
References 1258(1)
Appendix B Protective Device Classification 1259(12)
Appendix C Overhead Line Impedances 1271(12)
Appendix D Transformer Data 1283(4)
Appendix E 500kV Transmission Line Data 1287(8)
E.1 Tower Design 1287(1)
E.2 Unit Length Electrical Characteristics 1288(1)
E.3 Total Line Impedence and Admittance 1288(1)
E.4 Nominal Pi 1289(1)
E.5 ABCD Parameters 1289(1)
E.6 Equivalent Pi 1289(3)
E.7 Surge Impedance Loading 1292(1)
E.8 Normalization 1292(1)
E.9 Line Ratings and Operating Limits 1293(1)
References 1293(2)
Index 1295(12)
About the Author 1307

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews