Uh-oh, it looks like your Internet Explorer is out of date.

For a better shopping experience, please upgrade now.

Prime Obsession: Berhhard Riemann and the Greatest Unsolved Problem in Mathematics

Prime Obsession: Berhhard Riemann and the Greatest Unsolved Problem in Mathematics

4.6 7
by John Derbyshire

See All Formats & Editions

In 1859, Bernhard Riemann, a little-known thirty-two year old mathematician, made a hypothesis while presenting a paper to the Berlin Academy titled  “On the Number of Prime Numbers Less Than a Given Quantity.”  Today, after 150 years of careful research and exhaustive study, the Riemann Hyphothesis remains unsolved, with a one-million-dollar


In 1859, Bernhard Riemann, a little-known thirty-two year old mathematician, made a hypothesis while presenting a paper to the Berlin Academy titled  “On the Number of Prime Numbers Less Than a Given Quantity.”  Today, after 150 years of careful research and exhaustive study, the Riemann Hyphothesis remains unsolved, with a one-million-dollar prize earmarked for the first person to conquer it.

Alternating passages of extraordinarily lucid mathematical exposition with chapters of elegantly composed biography and history, Prime Obsession is a fascinating and fluent account of an epic mathematical mystery that continues to challenge and excite the world.

Editorial Reviews

From the Publisher
"Derbyshire’s attempt to take nonmathematicians into this subject had me on the edge of my seat."—Los Angeles Times

"Riemann and his colleagues come to life as real characters and not just adjectives for conjectures and theorems."—Scientific American

Martin Gardner
The Riemann Hypothesis is one of the deepest of all unsolved problems in mathematics. Unfortunately it is difficult to state exactly what the hypothesis is. It is high time that someone would write a book explaining the hypothesis in ways understandable by ordinary mathematicians and even by laymen. Three cheers to John Derbyshire for having finally done it.—"Mathematical Games" columnist for Scientific American and author of Did Adam and Eve Have Navels?
Keith Devlin
An informative, comprehensive, well written account of the unsolved problem that most mathematicians regard as the most important open problem in the field. Derbyshire not only tells the historical story behind the problem -- the people stuff -- he also includes all the mathematics needed to understand what the problem is about and how people are trying to solve it.—Stanford University, author of The Millennium Problems: The Seven Greatest Unsolved Mathematical Puzzles of Our Time
Arthur Jaffe
John Derbyshire's tour de force Prime Obsession guides one through a 200-year-long story of the world's best-known, unsolved mathematical mystery. The formulation, study, and significance of the Riemann hypothesis each represent immense areas of mathematical thought; this book expertly tackles them all. The chapters filled with anecdotes alternate with chapters that lead the novice gently by hand into the exploration of fundamental ideas...captivating the reader and creating a lasting impression.—Harvard University
The New Criterion
...Derbyshire is a talented expositor determined to make the reader understand some serious mathematics. A general reader with some memory of high school algebra who is willing to concentrate will come away with a grasp of what the problem is and why insiders are excited. ... Late in his book, Derbyshire ambitiously but successfully unpacks [Riemann's] short and difficult [1859] paper... Explaining from a standing start what the Riemann zeta function and its zeros are in only half a book is not easy, and Derbyshire proves himself a leading mathematical communicator in being able to do it.
The Christian Science Monitor
The most detailed, and consequently the most rewarding account of the Riemann Hypothesis is John Derbyshire's Prime Obsession. The author, a trained mathematician with a day job as an investment banker, moonlights as a novelist. This remarkable constellation of interests results in a math book that reads like a mystery novel. When, some 300 pages into the book, Derbyshire finally presents Riemann's conclusion, it is with literally breathtaking impact.
John F. Nash, Jr.
A remarkable book.—1994 Nobel Prize Winner in Economics
The Los Angeles Times
Derbyshire's attempt to take nonmathematicians into this subject had me on the edge of my seat. Was he really going to introduce Moebius inversions in polite company? He did, and I found his treatment, and his chutzpah, consistently interesting. His account of what has happened in the last 30 years is sure-footed and perceptive. — Ben Yandell
Library Journal
Thanks to a proof by Euclid, mathematicians have known for more than 2000 years that there is no limit to the population of prime numbers; they extend to infinity. However, work continues to be done on the distribution of the primes, and much of that work now centers on efforts to prove the Riemann hypothesis. Bernhard Riemann was a great 19th-century German mathematician who offered in an 1859 paper an admittedly unproven conjecture relating some zero values of a "zeta function" to the distribution of primes. The importance of this abstruse speculation for modern research is demonstrated in a recent online search of Mathematical Reviews for the term "Riemann hypothesis"; 1403 publications were found. Now there are three more books to add to the numerous studies. Derbyshire, a mathematician by training, a member of the Mathematical Association of America, and a novelist (Seeing Calvin Coolidge in a Dream), first takes readers through well-organized mathematical fundamentals in order to give them a good understanding of Riemann's discovery and its consequences. Interspersed with the hardcore math, other chapters profile Reimann the man and trace the history of mathematics in relation to his still-unproven hypothesis. Derbyshire shows how after 150 years, the world's greatest minds still haven't found a solution. Because this book does not sugarcoat complex ideas, readers lacking at least college-level math will be hard-pressed to understand some parts. Still, this volume is highly recommended for academic and larger public libraries as an excellent introduction for nonspecialists. Du Sautoy is the only professional research mathematician among these three authors, but he does not confront his readers with very many equations or other bits of mathematical apparatus. Instead, he offers nicely done verbal descriptions of the essence of the hypothesis and the efforts to prove it. Like Derbyshire, he intersperses items from math history and from the work and interactions of current researchers. Du Sautoy's book has much to offer for most academic and public libraries, especially to readers of very limited math background. Sabbagh (A Rum Affair) has written several books on a variety of topics, not all science-related. His latest emphasizes anecdotes from contemporary mathematicians who have studied Riemann's hypothesis. Indeed, he pays so much attention to a particularly idiosyncratic mathematician, ignored by the two other authors, that in his quest for human-interest material, he seems to lose sight of serious mathematical issues. Sabbagh's discussion of the actual mathematics is not so well organized, and much of it is relegated to a series of appendixes. His book is most useful in giving readers a feel for how research mathematicians live, work, and interrelate in the 21st century. Only libraries seeking comprehensive coverage of mathematics will need to get the Sabbagh work.-Jack W. Weigel, Ann Arbor, MI Copyright 2003 Reed Business Information.

Product Details

Penguin Publishing Group
Publication date:
Edition description:
Sales rank:
Product dimensions:
5.28(w) x 7.99(h) x 0.93(d)
Age Range:
18 - 17 Years

Read an Excerpt

Prime Obsession

Berhhard Riemann and the Greatest Unsolved Problem in Mathematics
By John Derbyshire

Plume Books

Copyright © 2004 John Derbyshire
All right reserved.

ISBN: 0452285259

Chapter One

Card Trick

I. Like many other performances, this one begins with a deck of cards.

Take an ordinary deck of 52 cards, lying on a table, all four sides of the deck squared away. Now, with a finger slide the topmost card forward without moving any of the others. How far can you slide it before it tips and falls? Or, to put it another way, how far can you make it overhang the rest of the deck?

The answer, of course, is half a card length, as you can see in Figure 1-1. If you push it so that more than half the card overhangs, it falls. The tipping point is at the center of gravity of the card, which is halfway along it.

Now let's go a little further. With that top card pushed out half its length-that is, to maximum overhang-over the second one, push that second card with your finger. How much combined overhang can you get from these top two cards?

The trick is to think of these top two cards as a single unit. Where is the center of gravity of this unit? Well, it's halfway along the unit, which is altogether one and a half cards long; so it's three-quarters of a card length from the leading edge of the top card (see Figure 1-2). The combined overhang is, therefore,three-quarters of a card length. Notice that the top card still overhangs the second one by half a card length. You moved the top two cards as a unit.

If you now start pushing the third card to see how much you can increase the overhang, you find you can push it just one-sixth of a card length. Again, the trick is to see the top three cards as a single unit. The center of gravity is one-sixth of a card length back from the leading edge of the third card (see Figure 1-3).

In front of this point is one-sixth of the third card, a sixth plus a quarter of the second card, and a sixth plus a quarter plus a half of the top card, making a grand total of one and a half cards.

1/6+(1/6+1/4)+(1/6+1/4+1/2)=1 1/2

That's half of three cards-the other half being behind the tipping point. Here's what you have after pushing that third card as far as it will go (see Figure 1-4).

The total overhang now is a half (from the top card) plus a quarter (from the second) plus a sixth (from the third). This is a total of eleven twelfths of a card. Amazing!

Can you get an overhang of more than one card? Yes you can. The very next card-the fourth from the top-if pushed forward carefully, gives another one-eighth of a card length overhang. I'm not going to do the arithmetic; you can trust me, or work it out as I did for the first three cards. Total overhang with four cards: one-half plus one-quarter plus one-sixth plus one-eighth, altogether one and one-twenty- fourth card lengths (see Figure 1-5).

If you keep going the overhangs accumulate like this.


for the 51 cards you push. (No point pushing the very bottom one.) This comes out to a shade less than 2.25940659073334. So you have a total overhang of more than two and a quarter card lengths! (See Figure 1-6.)

I was a college student when I learned this. It was summer vacation and I was prepping for the next semester's work, trying to get ahead of the game. To help pay my way through college I used to spend summer vacations as a laborer on construction sites, work that was not heavily unionized at the time in England. The day after I found out about this thing with the cards I was left on my own to do some clean-up work in an indoor area where hundreds of large, square, fibrous ceiling tiles were stacked. I spent a happy couple of hours with those tiles, trying to get a two and a quarter tile overhang from 52 of them. When the foreman came round and found me deep in contemplation of a great wobbling tower of ceiling tiles, I suppose his worst fears about the wisdom of hiring college students must have been confirmed.

II. One thing mathematicians like to do, and find very fruitful, is extrapolation-taking the assumptions of a problem and stretching them to cover more ground.

I assumed in the above problem that we had 52 cards to work with. We found that we could get a total overhang of better than two and a quarter cards.

Why restrict ourselves to 52 cards? Suppose we had more? A hundred cards? A million? A trillion? Suppose we had an unlimited supply of cards? What's the biggest possible overhang we could get?

First, look at the formula we started to develop. With 52 cards the total overhang was


Since all the denominators are even, I can take out one-half as a factor and rewrite this as

1/2 (1+1/2+1/3+1/4+1/5+1/6+1/7+1/8+...+1/51)

If there were a hundred cards, the total overhang would be With a trillion cards it would be

1/2 (1+1/2+1/3+1/4+1/5+1/6+1/7+1/8+...+1/99)

With a trillion cards it would be


That's a lot of arithmetic; but mathematicians have shortcuts for this kind of thing, and I can tell you with confidence that the total overhang with a hundred cards is a tad less than 2.58868875882, while for a trillion cards it is a wee bit more than 14.10411839041479.

These numbers are doubly surprising. The first surprise is that you can get a total overhang of more than 14 full card lengths, even though you need a trillion cards to get it. Fourteen card lengths is more than four feet, with standard playing cards. The second surprise, when you start thinking about it, is that the numbers aren't bigger. Going from 52 cards to 100 got us only an extra one-third of a card overhang (a bit less than one-third, in fact). Then going all the way to a trillion-a stack of a trillion standard playing cards would go most of the way from the Earth to the Moon-gained us only another 11 1/2 card lengths.

And if we had an unlimited number of cards? What is the absolute biggest overhang we could get? The remarkable answer is, there is no limit. Given enough cards, you could have an overhang of any size. You want an overhang of 100 card lengths? You'd need a stack of about 405,709,150,012,598 trillion trillion trillion trillion trillion trillion cards-a stack whose height would far, far exceed the bounds of the known universe. Yet you could get still bigger overhangs, and bigger, as big as you want, if you're willing to use unimaginably large numbers of cards. A million-card overhang? Sure, but the number of cards you need now is so huge it would need a fair-sized book just to print it in-it has 868,589 digits.

III. The thing to concentrate on here is that expression inside the parentheses


This is what mathematicians call a series, addition of terms continuing indefinitely, where the terms follow some logical progression. Here the terms 1, 1/2, 1/3, 1/4, 1/5,1/6+1/7+,... are the reciprocals of the ordinary counting numbers 1, 2, 3, 4, 5, 6, 7, ....

The series 1+1/2+1/3+1/4+1/5+1/6+1/7+... is sufficiently important that mathematicians have a name for it. It is called the harmonic series.

What I have stated above amounts to this: by adding enough terms of the harmonic series, you can get a total as big as you please. The total has no limit.

A crude, but popular and expressive, way to say this is: the harmonic series adds up to infinity.


Well-brought-up mathematicians are taught to sniff at expressions like that; but so long as you know the pitfalls of using them I think they are perfectly all right. Leonhard Euler, one of the half-dozen greatest mathematicians who ever lived, used them all the time with very fruitful results. However, the proper mathematical term of art is: The harmonic series is divergent.

Well, I have said this, but can I prove it? Everybody knows that in mathematics you must prove every result by strict logic. Here we have a result: the harmonic series is divergent. How do you prove it?

The proof is, in fact, rather easy and depends on nothing more than ordinary arithmetic. It was produced in the late Middle Ages by a French scholar, Nicole d'Oresme (ca. 1323-1382). D'Oresme pointed out that 1/3+1/4 is greater than 1/2 ; so is 1/5+1/6+1/7+1/8; so is 1/9+1/10+1/11+1/12+1/13+1/14+1/15+1/16; and so on. In other words, by taking 2 terms, then 4 terms, then 8, then 16 terms, and so on, you can group the series into an infinite number of blocks, every one of which is bigger than one-half. The entire sum must, therefore, be infinite. Don't be perplexed by the fact that the blocks get bigger very quickly. There is an awful lot of room in "infinity," and no matter how many blocks you take, the next block is well defined and waiting for you. There is always another one-half to be added; and that means that the total increases without limit.

D'Oresme's proof of the divergence of the harmonic series seems to have been mislaid for several centuries. Pietro Mengoli proved the result all over again in 1647, using a different method; then, forty years later, Johann Bernoulli proved it using yet another method; and shortly after that, Johann's elder brother Jakob produced a proof by a fourth method. Neither Mengoli nor the Bernoullis seem to have been aware of d'Oresme's fourteenth-century proof, one of the barely known masterpieces of medieval mathematics. D'Oresme's proof remains the most straightforward and elegant of all the proofs, though, and is the one usually given in textbooks today.

IV. The amazing thing about series is not that some of them are divergent, but that any of them are not. If you add together an infinity of numbers, you expect to get an infinite result, don't you? The fact that you sometimes don't can be easily illustrated.

Take an ordinary ruler marked in quarters, eighths, sixteenths, and so on (the more "so on" the better-I've shown a ruler marked in sixty-fourths). Hold a sharp pencil point at the very first mark on the ruler, the zero. Move the pencil one inch to the right. The pencil point is now on the one-inch mark and you have moved it a total of one inch (see Figure 1-7).

Now move the pencil half an inch further to the right (see Figure 1-8).

Now move the pencil a quarter-inch further to the right ... then an eighth-inch ... then a sixteenth... then a thirty-second ... then a sixty-fourth. Your pencil is in the position shown in Figure 1-9

... and you have moved to the right a total distance of


which is, as you can see, 1 63/64. Clearly, if you could go on like this, halving the distance each time, you would get closer and closer to the two-inch mark. You would never quite reach it; but there is no limit to how close you could get. You could get to within a millionth of an inch of it; or a trillionth; or a trillion trillion trillion trillion trillion trillion trillion trillion trillionth. We can express this fact as

Expression 1-1

where it is understood that there is an infinite number of terms to add up on the left-hand side of the equals sign.

The point I'm making here is the difference between the harmonic series and this new one. With the harmonic series I added up an infinite number of terms and got infinity. Here I am adding up an infinite number of terms and getting 2. The harmonic series is divergent. This one is convergent.

The harmonic series has its charms, and it stands at the center of the topic this book addresses-the Riemann Hypothesis. Generally speaking, however, mathematicians are more interested in convergent series than divergent ones.

V. Suppose that instead of moving one inch to the right, then a half-inch to the right, then a quarter-inch to the right, and so on, I decided to alternate directions: an inch to the right, a half-inch to the left, a quarter-inch to the right, an eighth-inch to the left.... After seven moves I'd be at the point shown in Figure 1-10.

Since from the mathematical point of view a move to the left is just a negative move to the right, this is equivalent to


which is 43/64. In fact, it's rather easy to show-I'll prove it in a later chapter-that if you keep on adding and subtracting to infinity you get

Expression 1-1

VI. Now, suppose that instead of starting out with a ruler marked in halves, quarters, eighths, sixteenths, and so on, I have a ruler marked in thirds, ninths, twenty-sevenths, eighty-firsts, and so on. In other words, instead of halves, halves of halves, halves of halves of halves ... I have thirds, thirds of thirds, thirds of thirds of thirds, and so on. And suppose I do an exercise similar to the first one, move the pencil along one inch, then a third of an inch, then a ninth, then a twenty-seventh (see Figure 1-11).

I don't think it's too hard to see that if you continue forever, you end up moving right a total 1 1/2 inches as shown in Expression 1-3. That is,

1+1/3+1/9+1/27+1/81+1/243+1/729+1/2187+...=1 1/2
Expression 1-3

And of course, I can do the alternating movement with this new ruler, too: right one inch, left a third, right a ninth, left a twenty-seventh, and so on (see Figure 1-12).

The math of Expression 1-4 is not so visually obvious, but it's a fact that

Expression 1-4

So here we have four convergent series, the first (Expression 1-1) creeps closer and closer to 2 from the left, the second (Expression 1-2) closes in on 2/3 from left and right alternately, the third (Expression 1-3) creeps closer and closer to 1 1/2 from the left, the fourth (Expression 1-4) closes in on 3/4 from left and right alternately. Before that, I showed one divergent series, the harmonic series.

VII. When reading math, it is important to know where in math you are-what region of this vast subject you are exploring. The particular zone these infinite series dwell in is what mathematicians call analysis. Analysis used, in fact, to be thought of as the study of the infinite, that is, the infinitely large, and of the infinitesimal, the infinitely small. When Leonhard Euler-of whom I shall write much more later-published the first great textbook of analysis in 1748, he called it Introductio in analysin infinitorum: "Introduction to the Analysis of the Infinite."

The notions of the infinite and the infinitesimal created serious problems in math during the early nineteenth century, though, and eventually they were swept away altogether in a great reform.


Excerpted from Prime Obsession by John Derbyshire Copyright © 2004 by John Derbyshire. Excerpted by permission.
All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher.
Excerpts are provided by Dial-A-Book Inc. solely for the personal use of visitors to this web site.

What People are Saying About This

From the Publisher

"Derbyshire’s attempt to take nonmathematicians into this subject had me on the edge of my seat." —Los Angeles Times

"Riemann and his colleagues come to life as real characters and not just adjectives for conjectures and theorems." —Scientific American

Meet the Author

JOHN DERBYSHIRE is a contributing editor for National Review, where he writes a regular column. He also contributes regularly to National Review Online and writes frequently for a number of other publications, including the Wall Street Journal, the American Conservative, the Washington Examiner, and the New Criterion. In addition to his opinion journalism, he writes on the subject of mathematics and is the author of the books Prime Obsession and Unknown Quantity. His novel, Seeing Calvin Coolidge in a Dream, was chosen as a New York Times Notable Book of the Year. A native of England, Derbyshire now lives on Long Island, New York, with his wife and two children.

Customer Reviews

Average Review:

Post to your social network


Most Helpful Customer Reviews

See all customer reviews

Prime Obsession: Berhhard Riemann and the Greatest Unsolved Problem in Mathematics 4.6 out of 5 based on 0 ratings. 7 reviews.
Guest More than 1 year ago
I loved 'Prime Obsession'. Many popular mathematical books try to simplify so much that the beauty of the underlying mathematics is not revealed. Derbyshire's skill is leading the reader patiently with the aid of many diagrams into the mathematics behind the Reimann hypothesis. I would have preferred a bit more mathematics and less of the historical and biographical background which is well known and readily available elsewhere. In particular I wish Derbyshire had had more to say on Mobius integration which is a key concept. Derbyshire advises the reader that several accounts of Mobius integration can be found on the Internet. Well, yes, but the authors of these accounts lack Derbyshire's explanatory skills. I have read other books on the Reimann hypothesis, but they always ducked away when the mathematics started to get difficult and left me disappointed. 'Prime Obsession' delivers. Highly recommended.
Guest More than 1 year ago
I have to say, I have not enjoyed a math book this much since I read 'The Art of The Infinite' for the first time. This book truly captures the sheer joy of math for math's sake alone. One key point that is made is that math, unlike any other science, is not spured along by the needs of society at the time. Money and research are poured into facinating problems that may or may not have a real world application yet. Most other sciences see this persuit as pointless... but math... math is something else... it is artistic, and elegant. This book captures that elegance and puts it in terms that most folks with a decent background in math can understand. Do be warned though, you should have at least a decent background in a beginners level calculus course before you try to make heads or tails of this read. Otherwise, the later chapters will fly right over your head.
Anonymous More than 1 year ago
Anonymous More than 1 year ago
Anonymous More than 1 year ago
Anonymous More than 1 year ago
Guest More than 1 year ago
This book was written to give you math and the history of math on the topic of the reiman hypothesis. I love it when the author knows their subject!
Too many math topic books have the author appologizing about their lack of mathematical understanding, and saying boy if I cant get it then you surely cant understand it.... Well J Derbyshire does nothing of the sort. He gives you the scoop on the RH and gives you all the math you need to understand it.
I have read 3 books on the subject, and the other two were nothing like this one. If the topic has any interest to you, then you will enjoy this book immensely.