Scalable Optimization via Probabilistic Modeling: From Algorithms to Applications
I’m not usually a fan of edited volumes. Too often they are an incoherent hodgepodge of remnants, renegades, or rejects foisted upon an unsuspecting reading public under a misleading or fraudulent title. The volume Scalable Optimization via Probabilistic Modeling: From Algorithms to Applications is a worthy addition to your library because it succeeds on exactly those dimensions where so many edited volumes fail. For example, take the title, Scalable Optimization via Probabilistic M- eling: From Algorithms to Applications. You need not worry that you’re going to pick up this book and find stray articles about anything else. This book focuseslikealaserbeamononeof thehottesttopicsinevolutionary compu- tion over the last decade or so: estimation of distribution algorithms (EDAs). EDAs borrow evolutionary computation’s population orientation and sel- tionism and throw out the genetics to give us a hybrid of substantial power, elegance, and extensibility. The article sequencing in most edited volumes is hard to understand, but from the get go the editors of this volume have assembled a set of articles sequenced in a logical fashion. The book moves from design to efficiency enhancement and then concludes with relevant applications. The emphasis on efficiency enhancement is particularly important, because the data-mining perspective implicit in EDAs opens up the world of optimization to new me- ods of data-guided adaptation that can further speed solutions through the construction and utilization of effective surrogates, hybrids, and parallel and temporal decompositions.
1103818583
Scalable Optimization via Probabilistic Modeling: From Algorithms to Applications
I’m not usually a fan of edited volumes. Too often they are an incoherent hodgepodge of remnants, renegades, or rejects foisted upon an unsuspecting reading public under a misleading or fraudulent title. The volume Scalable Optimization via Probabilistic Modeling: From Algorithms to Applications is a worthy addition to your library because it succeeds on exactly those dimensions where so many edited volumes fail. For example, take the title, Scalable Optimization via Probabilistic M- eling: From Algorithms to Applications. You need not worry that you’re going to pick up this book and find stray articles about anything else. This book focuseslikealaserbeamononeof thehottesttopicsinevolutionary compu- tion over the last decade or so: estimation of distribution algorithms (EDAs). EDAs borrow evolutionary computation’s population orientation and sel- tionism and throw out the genetics to give us a hybrid of substantial power, elegance, and extensibility. The article sequencing in most edited volumes is hard to understand, but from the get go the editors of this volume have assembled a set of articles sequenced in a logical fashion. The book moves from design to efficiency enhancement and then concludes with relevant applications. The emphasis on efficiency enhancement is particularly important, because the data-mining perspective implicit in EDAs opens up the world of optimization to new me- ods of data-guided adaptation that can further speed solutions through the construction and utilization of effective surrogates, hybrids, and parallel and temporal decompositions.
169.99 In Stock
Scalable Optimization via Probabilistic Modeling: From Algorithms to Applications

Scalable Optimization via Probabilistic Modeling: From Algorithms to Applications

Scalable Optimization via Probabilistic Modeling: From Algorithms to Applications

Scalable Optimization via Probabilistic Modeling: From Algorithms to Applications

Paperback(Softcover reprint of hardcover 1st ed. 2006)

$169.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

I’m not usually a fan of edited volumes. Too often they are an incoherent hodgepodge of remnants, renegades, or rejects foisted upon an unsuspecting reading public under a misleading or fraudulent title. The volume Scalable Optimization via Probabilistic Modeling: From Algorithms to Applications is a worthy addition to your library because it succeeds on exactly those dimensions where so many edited volumes fail. For example, take the title, Scalable Optimization via Probabilistic M- eling: From Algorithms to Applications. You need not worry that you’re going to pick up this book and find stray articles about anything else. This book focuseslikealaserbeamononeof thehottesttopicsinevolutionary compu- tion over the last decade or so: estimation of distribution algorithms (EDAs). EDAs borrow evolutionary computation’s population orientation and sel- tionism and throw out the genetics to give us a hybrid of substantial power, elegance, and extensibility. The article sequencing in most edited volumes is hard to understand, but from the get go the editors of this volume have assembled a set of articles sequenced in a logical fashion. The book moves from design to efficiency enhancement and then concludes with relevant applications. The emphasis on efficiency enhancement is particularly important, because the data-mining perspective implicit in EDAs opens up the world of optimization to new me- ods of data-guided adaptation that can further speed solutions through the construction and utilization of effective surrogates, hybrids, and parallel and temporal decompositions.

Product Details

ISBN-13: 9783642071164
Publisher: Springer Berlin Heidelberg
Publication date: 11/25/2010
Series: Studies in Computational Intelligence , #33
Edition description: Softcover reprint of hardcover 1st ed. 2006
Pages: 349
Product dimensions: 6.10(w) x 9.25(h) x 0.03(d)

Table of Contents

The Factorized Distribution Algorithm and the Minimum Relative Entropy Principle.- Linkage Learning via Probabilistic Modeling in the Extended Compact Genetic Algorithm (ECGA).- Hierarchical Bayesian Optimization Algorithm.- Numerical Optimization with Real-Valued Estimation-of-Distribution Algorithms.- A Survey of Probabilistic Model Building Genetic Programming.- Efficiency Enhancement of Estimation of Distribution Algorithms.- Design of Parallel Estimation of Distribution Algorithms.- Incorporating a priori Knowledge in Probabilistic-Model Based Optimization.- Multiobjective Estimation of Distribution Algorithms.- Effective and Reliable Online Classification Combining XCS with EDA Mechanisms.- Military Antenna Design Using a Simple Genetic Algorithm and hBOA.- Feature Subset Selection with Hybrids of Filters and Evolutionary Algorithms.- BOA for Nurse Scheduling.- Searching for Ground States of Ising Spin Glasses with Hierarchical BOA and Cluster Exact Approximation.
From the B&N Reads Blog

Customer Reviews