Sensitive Matter: Foams, Gels, Liquid Crystals, and Other Miracles

Sensitive Matter: Foams, Gels, Liquid Crystals, and Other Miracles


Members save with free shipping everyday! 
See details


Life would not exist without sensitive, or soft, matter. All biological structures depend on it, including red blood globules, lung fluid, and membranes. So do industrial emulsions, gels, plastics, liquid crystals, and granular materials. What makes sensitive matter so fascinating is its inherent versatility. Shape-shifting at the slightest provocation, whether a change in composition or environment, it leads a fugitive existence.

Physicist Michel Mitov brings drama to molecular gastronomy (as when two irreconcilable materials are mixed to achieve the miracle of mayonnaise) and offers answers to everyday questions, such as how does paint dry on canvas, why does shampoo foam better when you "repeat," and what allows for the controlled release of drugs? Along the way we meet a futurist cook, a scientist with a runaway imagination, and a penniless inventor named Goodyear who added sulfur to latex, quite possibly by accident, and created durable rubber.

As Mitov demonstrates, even religious ritual is a lesson in the surprising science of sensitive matter. Thrice yearly, the reliquary of St. Januarius is carried down cobblestone streets from the Cathedral to the Church of St. Clare in Naples. If all goes as hoped--and since 1389 it often has--the dried blood contained in the reliquary's largest vial liquefies on reaching its destination, and Neapolitans are given a reaffirming symbol of renewal.

Product Details

ISBN-13: 9780674064560
Publisher: Harvard
Publication date: 04/10/2012
Pages: 208
Product dimensions: 5.70(w) x 8.30(h) x 1.00(d)

About the Author

Michel Mitov is Director of Research at CNRS (National Center for Scientific Research, France) and Head of Liquid Crystal Group at CEMES (Centre d’Elaboration de Matériaux et d’Etudes Structurales) in Toulouse

Read an Excerpt

From Chapter One: Peacemaking among enemies…easy when a mediator is involved

In 1756, the Duke of Richelieu’s chef brought back from Port Mahon (a town in the Balearic islands that the duke had conquered, in the military sense of the word) a recipe for a sauce based on olive oil and egg yolk. He called his discovery mahonnaise; later, it became mayonnaise. Of course, a story this specific about a preparation this famous is asking to be contested. And indeed, it is said, though less convincingly, that the word is derived from magnonaise (from magner or manier – to handle) or from moyeunaise (in the Middle Ages, the yolk of an egg was known as moyeu). It also (and still) appears that the inhabitants of la Mayenne and Bayonne make some claim to parentage based on phonetic proximity. At any rate, everybody would agree that oil does not mix with water; by this reasoning, it should not mix with egg yolk, either, which is 50 percent water. But why? Although, electrically speaking, a molecule of water is neutral, its atoms do carry charges: the single oxygen (O) has two negative charges, and each of the molecule’s two hydrogen (H) atoms has a positive charge. Two water molecules unite when a hydrogen atom on one is attracted to the oxygen atom on the other, forming a hydrogen bond. Molecules that contain OH groups generally form hydrogen bonds with water molecules. Oil molecules, on the other hand, are triglycerides composed of carbon and hydrogen. Their structure resembles a comb with three teeth and has no space for OH groups. Which brings us back to the question of how to bring oil and water together.

Can it be done? Temporarily, yes, because egg yolk contains not only water but also lecithin molecules, which act as mediators. Each consists of two parts: one water-loving (hydrophilic) and the other – two-tailed – that is water-hating (hydrophobic). We call these dual-affinity molecules amphiphiles from the Greek philos (friend) and amphi (both), which expresses the idea of a double possibility (an amphitheater has a left and a right side, an amphora has two handles). Amphiphilia will feature throughout our journey, whether the amphiphilic molecules be natural or synthetic, and their functions biological or industrial.

In creating a stable mayonnaise with an oil concentration of more than 60 percent, lecithin molecules play a double role. They coat the drops of oil by linking their water-hating tails to them; the resulting “spheres” are called micelles, from the Latin mica, for “morsel” (their thin-leaved structure enables mica fragments to be peeled apart). They also ensure the dispersion of the oil drops by exposing their hydrophilic heads to the water. The egg yolk proteins fulfill the same functions.

Micelles swell as oil is added, and the mix must be beaten all the while to break up the mass of oil into droplets. If too much oil is added, the drops coalesce into unequally sized larger drops. The mayonnaise then fails because there are no longer enough amphiphiles to protect all the interfaces between the oil and the water. If there is too much yolk, the sauce will taste overwhelmingly of egg. The consistency will also be too firm owing to the closeness of the oil drops. Not enough water can ruin a mayonnaise too, although adding a few drops of water, vinegar, or lemon juice while beating may resurrect it. Naturally, these measures also serve to soften the sauce, after which more oil can be added until it becomes too firm again, whereupon additional drops of water can be added, and so forth. This is a practical way of gradually optimizing the quantity of amphiphilic molecules. If the concentration in the aqueous phase (state) is too high, the result will be an emulsion of water in oil that risks catastrophic phase separation of the constituents. Mustard also contributes amphiphilic molecules.

Table of Contents

Preface: Matter, Are You There? ix

Prologue: Sensitive Matter, Divine Matter? xiii

Introduction: Let Us Praise Sensitivity, a Unifying Virtue 1

Conciliation: The Art of Resolving Conflicts

1 Peacemaking among Enemies … Easy When a Mediator Is Involved 5

Blend or Separate?


No-Fail Mayonnaise

A Very Discreet Peacemaker

Beyond Mayonnaise

2 Dissolving Fat in Water: A Question of Organization 12

3 Don't Mix, Associate! 16

Those Were the Days …

The Psychology of a School of Fish

Molecular Anatomy

Sequestering a School of Fish

Windows Would Do Well to Reflect

Revelation: The Little Additive That Changes Everything

4 Rubber: A Story Nearly Cut Short 35

Exploring the Amazon

Charles Goodyear: A Human Adventure

Beyond Rubber

Polywater: A Case of Pathological Science

5 The Firefighter's Jet Stream: Reach for the Sky 48

6 The Glamorous Affair of Gas and Liquid 51

From Grape Juice to a Champagne Glass: This Way, Please!

The Role of Interfaces

Certified Foamability

Living on the Edge

Beyond Champagne

7 Down with Foam! 61

8 Breathing: An Unseen Triumph 65

What Is the Problem?

The History of Alveolar Pressure

Not Too Much, Not Too Little

Pulmonary Surfactant: A Multifunctional Material

9 Familiarity and Distance: Colloids 70

Being Divided Brings Them Together

The Scribe's Task

Ménage à Trois

Neither Too Little nor Too Much

Additional Instructions



10 Sensitive Cooking 77

Barcelona, Carrer del Carme





Adaptation: Responding to the Environment

11 A Cell, Though Not a Prison 93

Two or Three Things We Know about It Cellular Traffic

The Membrane Has No Lack of Potential

12 Putting Drug Delivery on Controlled Release 100

Meeting Up, but Where and When?

Encapsulation-Decapsulation: Liposomes

Swelling-Deswelling: Excitable Polymers

Best of Luck!

13 Perpetual Sensitivity: Granular Matter 114

Age-Old Matter, Fresh Topic

Complex Matter, but Why?

The Paradox of the Missing Mass

Key to the Vault of Sensitivity

14 Liquefaction of the "Blood" of St. Januarius 120

Naples, Saturday, May 3, 2008

Sensitive "Blood": Imitations

Complex Fluids: A Feast of Sensitivities

Transformation by Touch

The "Blood" of St. Januarius: A Yield-Stress Fluid?

Natural versus Supernatural

Premeditation versus Chance

Epilogue 147

Bonus Tracks 151

Notes 159

Bibliography 167

Acknowledgments 175

Credits 177

Index of Sensitive Materials 179

Index of Proper Names 183

What People are Saying About This

Philip Ball

This book is a delight. With grace, poise and precision, Michel Mitov makes the case that there is as much wonder and challenging science in the behavior of everyday substances—egg white, toothpaste, sand, soap foam—as there is in the most esoteric experiments in particle physics. Sensitive matter could wish for no more sensitive, no more responsive and intelligent, a champion.
Philip Ball, author of Made to Measure and Molecules: A Very Short Introduction

David Quéré

An excellent guide to the labyrinthine world of soft matter.

Ian Hamley

This book shows how Soft Matter matters, in our daily lives and in more esoteric situations. Mitov gives many fascinating examples of the remarkable behaviour exhibited by polymers, colloids, foams and gels and their applications in fields as diverse as molecular gastronomy and liquid crystal displays. A selection of intriguing historical vignettes completes the mixture. This will be eagerly read by those looking for a brief account, without too much technical detail, of everyday soft materials.
Ian Hamley, author of Introduction to Soft Matter

Customer Reviews