ISBN-10:
0470669373
ISBN-13:
9780470669372
Pub. Date:
02/14/2012
Publisher:
Wiley
Solid State Proton Conductors: Properties and Applications in Fuel Cells / Edition 2

Solid State Proton Conductors: Properties and Applications in Fuel Cells / Edition 2

Hardcover

View All Available Formats & Editions
Current price is , Original price is $197.0. You
Select a Purchase Option
  • purchase options
    $163.51 $197.00 Save 17% Current price is $163.51, Original price is $197. You Save 17%.
  • purchase options

Product Details

ISBN-13: 9780470669372
Publisher: Wiley
Publication date: 02/14/2012
Pages: 426
Product dimensions: 6.90(w) x 9.90(h) x 1.00(d)

About the Author

Philippe Knauth is Professor and Director of the Laboratoire Chimie Provence, University of Provence, Marseille, France.
He has published 6 books, 2 European and 2 US patents, 200 publications, including 95 papers in international journals and 35 invited/plenary talks at international conferences.

Maria Luisa Di Vona is Assistant Professor in Chemistry at the Dipartimento di Scienze e Tecnologie Chimiche, Universita Degli Studi di RomaTor Veragata, Rome, Italy. She is also Visiting Professor at the University of Provence.
Author of 100 publications, including 67 in international journals, 2 book chapters , 1 book (Electroceramics VIII-2002).
Di Vona and Knauth were organizers of the 2009 E-MRS symposium "Materials for Polymer Electrolyte Membrane Fuel Cells".

Read an Excerpt

Click to read or download

Table of Contents

Preface xi

About the Editors xiii

Contributing Authors xv

1 Introduction and Overview: Protons, the Nonconformist Ions1
Maria Luisa Di Vona and Philippe Knauth

1.1 Brief History of the Field 2

1.2 Structure of This Book 2

References 4

2 Morphology and Structure of Solid Acids 5
Habib Ghobarkar, Philippe Knauth and OliverSch€af

2.1 Introduction 5

2.1.1 Preparation Technique of Solid Acids 5

2.1.2 Imaging Technique with the Scanning Electron Microscope6

2.2 Crystal Morphology and Structure of Solid Acids 8

2.2.1 Hydrohalic Acids 8

2.2.2 Main Group Element Oxoacids 10

2.2.3 Transition Metal Oxoacids 20

2.2.4 Carboxylic Acids 22

References 24

3 Diffusion in Solid Proton Conductors: Theoretical Aspectsand Nuclear Magnetic Resonance Analysis 25
Maria Luisa Di Vona, Emanuela Sgreccia and SebastianoTosto

3.1 Fundamentals of Diffusion 25

3.1.1 Phenomenology of Diffusion 26

3.1.2 Solutions of the Diffusion Equation 35

3.1.3 Diffusion Coefficients and Proton Conduction 37

3.1.4 Measurement of the Diffusion Coefficient 38

3.2 Basic Principles of NMR 40

3.2.1 Description of the Main NMR Techniques Used in MeasuringDiffusion Coefficients 42

3.3 Application of NMR Techniques 47

3.3.1 Polymeric Proton Conductors 47

3.3.2 Inorganic Proton Conductors 58

3.4 Liquid Water Visualization in Proton-Conducting Membranes byNuclear Magnetic Resonance Imaging 62

3.5 Conclusions 66

References 67

4 Structure and Diffusivity in Proton-Conducting MembranesStudied by Quasielastic Neutron Scattering 71
Rolf Hempelmann

4.1 Survey 71

4.2 Diffusion in Solids and Liquids 73

4.3 Quasielastic Neutron Scattering: A Brief Introduction 76

4.4 Proton Diffusion in Membranes 82

4.4.1 Microstructure by Means of SAXS and SANS 82

4.4.2 Proton Conductivity and Water Diffusion 89

4.4.3 QENS Studies 90

4.5 Solid State Proton Conductors 95

4.5.1 Aliovalently Doped Perovskites 96

4.5.2 Hydrogen-Bonded Systems 101

4.6 Concluding Remarks 104

References 104

5 Broadband Dielectric Spectroscopy: A Powerful Tool for theDetermination of Charge Transfer Mechanisms in Ion Conductors109
Vito Di Noto, Guinevere A. Giffin, Keti Vezzù, Matteo Pigaand Sandra Lavina

5.1 Basic Principles 110

5.1.1 The Interaction of Matter with Electromagnetic Fields: TheMaxwell Equations 110

5.1.2 Electric Response in Terms of e*m ðoÞ, s*mðoÞ, and Z*mðoÞ 111

5.2 Phenomenological Background of Electric Properties in aTime-Dependent Field 114

5.2.1 Polarization Events 114

5.3 Theory of Dielectric Relaxation 127

5.3.1 Dielectric Relaxation Modes of Macromolecular Systems129

5.3.2 A General Equation for the Analysis in the FrequencyDomain of s(o) and e(o) 132

5.4 Analysis of Electric Spectra 132

5.5 Broadband Dielectric Spectroscopy Measurement Techniques141

5.5.1 Measurement Systems 142

5.5.2 Contacts 158

5.5.3 Calibration 165

5.5.4 Calibration in Parallel Plate Methods 165

5.5.5 Measurement Accuracy 172

5.6 Concluding Remarks 180

References 180

6 Mechanical and Dynamic Mechanical Analysis ofProton-Conducting Polymers 185
Jean-Franc¸ois Chailan, Mustapha Khadhraoui andPhilippe Knauth

6.1 Introduction 185

6.1.1 Molecular Configurations: The Morphology andMicrostructure of Polymers 185

6.1.2 Molecular Motions 187

6.1.3 Glass Transition and Other Molecular Relaxations 188

6.2 Methodology of Uniaxial Tensile Tests 191

6.2.1 Elasticity and Young’s Modulus E 192

6.2.2 Elasticity and Shear Modulus G 195

6.2.3 Elasticity and Cohesion Energy 196

6.3 Relaxation and Creep of Polymers 197

6.3.1 Stress Relaxation of Polymers 198

6.3.2 Creep of Polymers 199

6.4 Engineering Stress–Strain Curves of Polymers 201

6.4.1 True Stress–Strain Curve for Plastic Flow andToughness of Polymers 203

6.4.2 Behavior of Composite Membranes 204

6.4.3 Behavior in the Glassy Regime 205

6.4.4 Influence of the Rate of Deformation 206

6.4.5 Effect of Temperature on Mechanical Properties 209

6.4.6 Thermal Strain 210

6.5 Stress–Strain Tensile Tests of Proton-ConductingIonomers 211

6.5.1 Influence of Heat Treatment and Cross-Linking 212

6.5.2 Behavior of Composites 214

6.5.3 Conclusions 215

6.6 Dynamic Mechanical Analysis (DMA) of Polymers 217

6.6.1 Principle of Measurement 217

6.6.2 Molecular Motions and Dynamic Mechanical Properties218

6.6.3 Experimental Considerations: How Does the Instrument Work?219

6.6.4 Parameters of Dynamic Mechanical Analysis 220

6.7 The DMA of Proton-Conducting Ionomers 222

6.7.1 Perfluorosulfonic Acid Ionomer Membranes 222

6.7.2 Nonfluorinated Membranes 225

6.7.3 Organic–Inorganic Composite (or Hybrid) Membranes230

Glossary 235

References 236

7 Ab Initio Modeling of Transport and Structureof Solid State Proton Conductors 241
Jeffrey K. Clark II and Stephen J. Paddison

7.1 Introduction 241

7.2 Theoretical Methods 244

7.2.1 Ab Initio Electronic Structure 244

7.2.2 Ab Initio Molecular Dynamics (AIMD) 248

7.2.3 Empirical Valence Bond (EVB) Models 249

7.3 Polymer Electrolyte Membranes 251

7.3.1 Local Microstructure 251

7.3.2 Proton Dissociation, Transfer, and Separation 258

7.4 Crystalline Proton Conductors and Oxides 279

7.4.1 Crystalline Proton Conductors 279

7.4.2 Oxides 284

7.5 Concluding Remarks 290

References 290

8 Perfluorinated Sulfonic Acids as Proton Conductor Membranes295
Giulio Alberti, Riccardo Narducci and Maria Luisa DiVona

8.1 Introduction on Polymer Electrolyte Membranes for Fuel Cells295

8.2 General Properties of Polymer Electrolyte Membranes 296

8.2.1 Ion Exchange of Polymers Electrolytes in H þ Form297

8.3 Perfluorinated Membranes Containing Superacid –SO3HGroups 303

8.3.1 Nafion Preparation 304

8.3.2 Nafion Morphology 304

8.3.3 Nafion Water Uptake in Liquid Water at DifferentTemperatures 306

8.3.4 Water-Vapor Sorption Isotherms of Nafion 307

8.3.5 Curves T/nc for Nafion 117 Membranes in H þ Form308

8.3.6 Water Uptake and Tensile Modulus of Nafion 311

8.3.7 Colligative Properties of Inner Proton Solutions in Nafion313

8.3.8 Thermal Annealing of Nafion 315

8.3.9 MCPI Method 315

8.3.10 Proton Conductivity of Nafion 319

8.4 Some Information on Dow and on Recent AquivionIonomers321

8.5 Instability of Proton Conductivity of Highly Hydrated PFSAMembranes 321

8.6 Composite Nafion Membranes 323

8.6.1 Silica-Filled Ionomer Membranes 323

8.6.2 Metal Oxide-Filled Nafion Membranes 324

8.6.3 Layered Zirconium Phosphate- and ZirconiumPhosphonate-Filled Ionomer Membranes 324

8.6.4 Heteropolyacid-Filled Membranes 325

8.7 Some Final Remarks and Conclusions 326

References 327

9 Proton Conductivity of Aromatic Polymers 331
Baijun Liu and Michael D. Guiver

9.1 Introduction 331

9.2 Synthetic Strategies of the Various Acid-FunctionalizedAromatic Polymers with Proton Transport Ability 332

9.2.1 Sulfonated Poly(arylene ether)s 332

9.2.2 Sulfonated Polyimides 341

9.2.3 Other Aromatic Polymers as PEMs 344

9.3 Approaches to Enhance Proton Conductivity 349

9.3.1 Nanophase-Separated Microstructures ContainingProton-Conducting Channels 349

9.3.2 Replacement of –Ph-SO3H by –CF2 –SO3H353

9.3.3 Synthesis of High-IEC PEMs 355

9.3.4 Composite Membranes 356

9.4 Balancing Proton Conductivity, Dimensional Stability, andOther Properties 358

9.5 Electrochemical Performance of Aromatic Polymers 361

9.5.1 PEMFC Performance 362

9.5.2 DMFC Performance 363

9.6 Summary 363

References 365

10 Inorganic Solid Proton Conductors 371
Philippe Knauth and Maria Luisa Di Vona

10.1 Fundamentals of Ionic Conduction in Inorganic Solids371

10.1.1 Defect Concentrations 372

10.1.2 Defect Mobilities 373

10.1.3 Kr€oger–Vink Nomenclature 373

10.1.4 Ionic Conduction in the Bulk: Hopping Model 376

10.2 General Considerations on Inorganic Solid Proton Conductors378

10.2.1 Classification of Solid Proton Conductors 379

10.3 Low-Dimensional Solid Proton Conductors: Layered and PorousStructures 381

10.3.1 b- and b00-Alumina-Type 381

10.3.2 Layered Metal Hydrogen Phosphates 382

10.3.3 Micro- and Mesoporous Structures 384

10.4 Three-Dimensional Solid Proton Conductors:“Quasi-Liquid” Structures 385

10.4.1 Solid Acids 385

10.4.2 Acid Salts 385

10.4.3 Amorphous and Gelled Oxides and Hydroxides 387

10.5 Three-Dimensional Solid Proton Conductors: DefectMechanisms in Oxides 387

10.5.1 Perovskite-Type Oxides 388

10.5.2 Other Structure Types 393

10.6 Conclusion 394

References 395

Index 399

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews