ISBN-10:
1848214685
ISBN-13:
9781848214682
Pub. Date:
10/06/2014
Publisher:
Wiley
Spatial Econometrics using Microdata / Edition 1

Spatial Econometrics using Microdata / Edition 1

by Jean Dube, Diego Legros
Current price is , Original price is $109.0. You

Temporarily Out of Stock Online

Please check back later for updated availability.

Product Details

ISBN-13: 9781848214682
Publisher: Wiley
Publication date: 10/06/2014
Series: ISTE Series
Pages: 242
Product dimensions: 6.10(w) x 9.30(h) x 0.80(d)

About the Author

Jean DUBÉ is Professor in regional development at Laval University, Canada.

Diègo LEGROS is a lecturer in economics and management at the University of Burgundy, France.

Read an Excerpt

Click to read or download

Table of Contents

ACKNOWLEDGMENTS  ix

PREFACE   xi

CHAPTER 1. ECONOMETRICS AND SPATIAL DIMENSIONS 1

1.1. Introduction   1

1.2. The types of data  6

1.2.1. Cross-sectional data    7

1.2.2. Time series 8

1.2.3. Spatio-temporal data    9

1.3. Spatial econometrics   11

1.3.1. A picture is worth a thousand words 13

1.3.2. The structure of the databases of spatial microdata15

1.4. History of spatial econometrics    16

1.5. Conclusion   21

CHAPTER 2. STRUCTURING SPATIAL RELATIONS  29

2.1. Introduction   29

2.2. The spatial representation of data    30

2.3. The distance matrix   34

2.4. Spatial weights matrices    37

2.4.1. Connectivity relations  40

2.4.2. Relations of inverse distance    42

2.4.3. Relations based on the inverse (or negative) exponential45

2.4.4. Relations based on Gaussian transformation 47

2.4.5. The other spatial relation   47

2.4.6. One choice in particular?   48

2.4.7. To start   49

2.5. Standardization of the spatial weights matrix  50

2.6. Some examples 51

2.7. Advantages/disadvantages of micro-data 55

2.8. Conclusion   56

CHAPTER 3. SPATIAL AUTOCORRELATION 59

3.1. Introduction   59

3.2. Statistics of global spatial autocorrelation  65

3.2.1. Moran’s I statistic    68

3.2.2. Another way of testing significance 72

3.2.3. Advantages of Moran’s I statistic inmodeling   74

3.2.4. Moran’s I for determining the optimal form ofW    75

3.3. Local spatial autocorrelation   77

3.3.1. The LISA indices   79

3.4. Some numerical examples of the detection tests  86

3.5. Conclusion   89

CHAPTER 4. SPATIAL ECONOMETRIC MODELS   93

4.1. Introduction   93

4.2. Linear regression models  95

4.2.1. The different multiple linear regression modeltypes  99

4.3. Link between spatial and temporal models  102

4.3.1. Temporal autoregressive models   103

4.3.2. Spatial autoregressive models    110

4.4. Spatial autocorrelation sources    115

4.4.1. Spatial externalities    117

4.4.2. Spillover effect     119

4.4.3. Omission of variables or spatial heterogeneity 123

4.4.4. Mixed effects  127

4.5. Statistical tests 129

4.5.1. LM tests in spatial econometrics   134

4.6. Conclusion   140

CHAPTER 5. SPATIO-TEMPORAL MODELING  145

5.1. Introduction   145

5.2. The impact of the two dimensions on the structure of thelinks: structuring of spatio-temporal links  148

5.3. Spatial representation of spatio-temporal data  150

5.4. Graphic representation of the spatial data generatingprocesses pooled over time   154

5.5. Impacts on the shape of the weights matrix  159

5.6. The structuring of temporal links: a temporal weightsmatrix    162

5.7. Creation of spatio-temporal weights matrices  167

5.8. Applications of autocorrelation tests and of autoregressivemodels    170

5.9. Some spatio-temporal applications  172

5.10. Conclusion   173

CONCLUSION    177

GLOSSARY   185

APPENDIX   189

BIBLIOGRAPHY  215

INDEX    227

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews