Superlattice to Nanoelectronics

Elsevier Insights provides high quality specialized content across a range of disciplines including life sciences, physical sciences, social sciences, engineering, computing, and finance. Through fast-track publication. Elsevier Insights offers the reader cutting-edge information, available in eBook or print format.

1116736793
Superlattice to Nanoelectronics

Elsevier Insights provides high quality specialized content across a range of disciplines including life sciences, physical sciences, social sciences, engineering, computing, and finance. Through fast-track publication. Elsevier Insights offers the reader cutting-edge information, available in eBook or print format.

220.0 Out Of Stock
Superlattice to Nanoelectronics

Superlattice to Nanoelectronics

by Raphael Tsu
Superlattice to Nanoelectronics

Superlattice to Nanoelectronics

by Raphael Tsu

Hardcover(2nd ed.)

$220.00 
  • SHIP THIS ITEM
    Temporarily Out of Stock Online
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Elsevier Insights provides high quality specialized content across a range of disciplines including life sciences, physical sciences, social sciences, engineering, computing, and finance. Through fast-track publication. Elsevier Insights offers the reader cutting-edge information, available in eBook or print format.


Product Details

ISBN-13: 9780080968131
Publisher: Elsevier Science
Publication date: 10/22/2010
Series: Elsevier Insights
Edition description: 2nd ed.
Pages: 346
Product dimensions: 6.20(w) x 9.10(h) x 1.20(d)

About the Author

Dr. R. Tsu started his professional career at the Bell Telephone Laboratories, Murray Hill, NJ, 1961, working on the theory and experiments related to electron-phonon interaction in piezoelectric solids. He became a close collaborator of Leo Esaki (Nobel Laureate in 1973) at IBM T.J. Watson Research Center where he joined in 1966, working on theory and experiments of optical- and transport-properties, band structures, in solids, and material characterization. A man-made semiconductor superlattice and modulation doping were conceived jointly with Esaki, in 1969, which led to a rapid development of man-made quantum materials and quantum structures eventually evolved into the present day quantum dots. His original formulation of tunneling through multiple man-made heterojunctions is widely accepted in nearly all aspects of resonant tunneling devices reaching Tera-Hertz, thus far being the fastest device to date. The theory and experiments of man-made superlattices and resonant tunneling through a quantum well led to his outstanding contribution award from IBM Research in 1975 and later in 1985, to sharing the International New Materials Prize of the American Physical Society with Esaki and Chang. In 1979, he became the head of Materials Research at Energy Conversion Devices, Inc., in charge of the study on the formation and structure of amorphous silicon. His major contributions involve the determination of bond angle distribution from Raman scattering and optical absorption measurements and experimental determination of conductivity percolation. In 1985, he became the head of the amorphous silicon research group at the Solar Energy Research Institute (now NREL) as a principal scientist, working on amorphous Si/Ge and Si/C alloys, showing that the famous Tauc's plot may be theoretically derived without adjustable parameters. In 1975, as the recipient of the Alexander von Humboldt award, he took a year sabbatical at Max Planck Institute for Solid State Physics in

Table of Contents

1. Superlattice
2. Resonant tunneling via man-made quantum well states
3. Optical properties and raman scattering in man-made quantum systems
4. Dielectric function and doping of a superlattice
5. Quantum step and activation energy
6. Semiconductor atomic superlattice (sas)
7. Si quantum dots
8. Capacitance, dielectric constant and doping quantum dots
9. Porous silicon
10. Some novel devices
11. Quantum impedance of electrons
12. Why super and why nano

What People are Saying About This

From the Publisher

A historical perspective of how technology and new fundamental ideas are introduced and developed in the field of nanoelectronics

From the B&N Reads Blog

Customer Reviews