Swarm Intelligence in Data Mining

Swarm Intelligence in Data Mining

Paperback(Softcover reprint of hardcover 1st ed. 2006)

$209.00
Eligible for FREE SHIPPING
  • Want it by Wednesday, October 24  Order now and choose Expedited Shipping during checkout.

Overview

Swarm Intelligence in Data Mining by Ajith Abraham

Swarm Intelligence is an innovative distributed intelligent paradigm for solving optimization problems that originally took its inspiration from the biological examples by swarming, flocking and herding phenomena in vertebrates. Data Mining is an analytic process designed to explore large amounts of data in search of consistent patterns and/or systematic relationships between variables, and then to validate the findings by applying the detected patterns to new subsets of data.

This book deals with the application of swarm intelligence in data mining. Addressing the various issues of swarm intelligence and data mining using different intelligent approaches is the novelty of this edited volume. This volume comprises of 11 chapters including an introductory chapter giving the fundamental definitions and some important research challenges.

Important features include the detailed overview of the various swarm intelligence and data mining paradigms, excellent coverage of timely, advanced data mining topics, state-of-the-art theoretical research and application developments and chapters authored by pioneers in the field. Academics, scientists as well as engineers engaged in research, development and application of optimization techniques and data mining will find the comprehensive coverage of this book invaluable.

Product Details

ISBN-13: 9783642071171
Publisher: Springer Berlin Heidelberg
Publication date: 11/29/2010
Series: Studies in Computational Intelligence , #34
Edition description: Softcover reprint of hardcover 1st ed. 2006
Pages: 268
Product dimensions: 6.10(w) x 9.25(h) x 0.02(d)

Table of Contents

Swarm Intelligence in Data Mining.- Ants Constructing Rule-Based Classifiers.- Performing Feature Selection with ACO.- Simultaneous Ant Colony Optimization Algorithms for Learning Linguistic Fuzzy Rules.- Ant Colony Clustering and Feature Extraction for Anomaly Intrusion Detection.- Particle Swarm Optimization for Pattern Recognition and Image Processing.- Data and Text Mining with Hierarchical Clustering Ants.- Swarm Clustering Based on Flowers Pollination by Artificial Bees.- Computer study of the evolution of ‘news foragers' on the Internet.- Data Swarm Clustering.- Clustering Ensemble Using ANT and ART.

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews