**Uh-oh, it looks like your Internet Explorer is out of date.**

For a better shopping experience, please upgrade now.

# Technical Calculus with Analytic Geometry / Edition 5

Technical Calculus with Analytic Geometry / Edition 5 available in Hardcover

## Overview

Appropriate for technical colleges, this textbook introduces differential and integral calculus, transcendental functions, integration techniques, parametric equations, polar coordinates, partial derivatives, infinite series, and physical applications of differential equations. The fourth edition adds sections on cylindrical coordinates and numerical solutions of differential equations. Annotation ©2005 Book News, Inc., Portland, OR

## Product Details

ISBN-13: | 2901133945191 |
---|---|

Publisher: | Cengage Learning |

Publication date: | 08/21/2012 |

Edition description: | New Edition |

Pages: | 544 |

Product dimensions: | 8.00(w) x 9.20(h) x 1.00(d) |

## Read an Excerpt

Appropriate for technical colleges, this textbook introduces differential and integral calculus, transcendental functions, integration techniques, parametric equations, polar coordinates, partial derivatives, infinite series, and physical applications of differential equations. The fourth edition adds sections on cylindrical coordinates and numerical solutions of differential equations. Annotation ©2005 Book News, Inc., Portland, OR

## First Chapter

Appropriate for technical colleges, this textbook introduces differential and integral calculus, transcendental functions, integration techniques, parametric equations, polar coordinates, partial derivatives, infinite series, and physical applications of differential equations. The fourth edition adds sections on cylindrical coordinates and numerical solutions of differential equations. Annotation ©2005 Book News, Inc., Portland, OR

## Table of Contents

1. INTRODUCTION TO ANALYTIC GEOMETRY. The Cartesian Coordinate System. The Slope. The Straight Line. Curve Sketching. Discussion of Curves with Graphing Utilities. The Conics. The Circle. The Parabola. The Ellipse. The Hyperbola. Translation of Axes; Standard Equations of the Conics. Review Exercises. 2. INTRODUCTION TO CALCULUS: THE DERIVATIVE. Functions and Intervals. Limits. The Derivative. The Derivative by the Four-Step Process. Derivatives of Polynomials. Instantaneous Rates of Change. Differentiation Formulas. Implicit Differentiation. Higher Derivatives. Review Exercises. 3. APPLICATIONS OF THE DERIVATIVE. The First-Derivative Test. The Second-Derivative Test. Exploring with Graphing Utilities. Applications of Minima and Maxima. Related rates. Differentials. Review Exercises. 4. THE INTEGRAL. Antiderivatives. The Area Problem. The Fundamental Theorem of Calculus. The Integral: Notation and General Definition. Basic Integration Formulas. Area Between Curves. Improper Integrals. The Constant of Integration. Numerical Integration. Review Exercises. 5. APPLICATION OF THE INTEGRAL. Means of Root Mean Squares. Volumes of Revolution: Disk and Washer Methods. Volumes of Revolution: Shell Method. Centroids. Moments of Inertia. Work and Fluid Pressure. Review Exercises. 6. DERIVATIVES OF TRANSCENDENTAL FUNCTIONS. Review of Trigonometry. Derivatives of Sine and Cosine Functions. Other Trigonometric Functions. Inverse Trigonometric Functions. Derivatives of Inverse Trigonometric Functions. Exponential and Logarithmic Functions. Derivative of the Logarithmic Function. Derivative of the Exponential Function. L'Hospital's rule. Applications. Newton's Method. Review Exercises. 7. INTEGRATION TECHNIQUES. The Power Formula Again. The Logarithmic and Exponentials Forms. Trigonometric Forms. Further Trigonometric Forms. Inverse Trigonometric Forms. Integration by Trigonometric Substitution. Integration by Parts. Integration of Rational Functions. Integration by Use of Tables. Additional Remarks. Review Exercises. 8. PARAMETIC EQUATIONS, VECTORS, AND POLAR COORDINATES. Vectors and Parametric Equations. Arc Length. Polar Coordinates. Curves in Polar Coordinates. Areas in Polar Coordinates. Review Exercises. 9. THREE-DIMENSIONAL SPACE; PARTIAL DERIVATIVES; MULTIPLE INTEGRALS. Surfaces in Three Dimensions. Partial Derivatives. Applications of Partial Derivatives. Curve Fitting. Integrated Integrals. Volumes by Double Integration. Mass, Centroids, and Moments of Inertia. Volumes in Cylindrical Coordinates. Review Exercises. 10. INFINITE SERIES. Introduction to Infinite Series. Tests for Convergence. Maclaurin Series. Operations with Series. Computations with Series; Applications. Fourier Series. Review Exercises. 11. FIRST-ORDER DIFFERETIAL EQUATIONS. What is Differential Equation? Separation of Variables. First-Order Linear Differential Equations. Applications of First-Order Differential Equations. Numerical Solutions. Review Exercises. 12. HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS. Higher-Order Homogeneous Differential Equations. Auxiliary Equations with Repeating or Complex Roots. Nonhomogeneous Equations. Applications of Second-Order Equations. Review Exercises. 13. THE LAPLACE TRANSFORM. Introduction and Basic Properties. Inverse Laplace Transforms. Partial Fractions. Solutions of Linear Equations by Laplace Transforms. Review Exercises. Appendix A: Tables. Common Units of Measure. A Short Table of Integrals. Appendix B: Answers to Selected Exercises. Index.

## Reading Group Guide

1. INTRODUCTION TO ANALYTIC GEOMETRY. The Cartesian Coordinate System. The Slope. The Straight Line. Curve Sketching. Discussion of Curves with Graphing Utilities. The Conics. The Circle. The Parabola. The Ellipse. The Hyperbola. Translation of Axes; Standard Equations of the Conics. Review Exercises. 2. INTRODUCTION TO CALCULUS: THE DERIVATIVE. Functions and Intervals. Limits. The Derivative. The Derivative by the Four-Step Process. Derivatives of Polynomials. Instantaneous Rates of Change. Differentiation Formulas. Implicit Differentiation. Higher Derivatives. Review Exercises. 3. APPLICATIONS OF THE DERIVATIVE. The First-Derivative Test. The Second-Derivative Test. Exploring with Graphing Utilities. Applications of Minima and Maxima. Related rates. Differentials. Review Exercises. 4. THE INTEGRAL. Antiderivatives. The Area Problem. The Fundamental Theorem of Calculus. The Integral: Notation and General Definition. Basic Integration Formulas. Area Between Curves. Improper Integrals. The Constant of Integration. Numerical Integration. Review Exercises. 5. APPLICATION OF THE INTEGRAL. Means of Root Mean Squares. Volumes of Revolution: Disk and Washer Methods. Volumes of Revolution: Shell Method. Centroids. Moments of Inertia. Work and Fluid Pressure. Review Exercises. 6. DERIVATIVES OF TRANSCENDENTAL FUNCTIONS. Review of Trigonometry. Derivatives of Sine and Cosine Functions. Other Trigonometric Functions. Inverse Trigonometric Functions. Derivatives of Inverse Trigonometric Functions. Exponential and Logarithmic Functions. Derivative of the Logarithmic Function. Derivative of the Exponential Function. L'Hospital's rule. Applications. Newton's Method. Review Exercises. 7. INTEGRATION TECHNIQUES. The Power Formula Again. The Logarithmic and Exponentials Forms. Trigonometric Forms. Further Trigonometric Forms. Inverse Trigonometric Forms. Integration by Trigonometric Substitution. Integration by Parts. Integration of Rational Functions. Integration by Use of Tables. Additional Remarks. Review Exercises. 8. PARAMETIC EQUATIONS, VECTORS, AND POLAR COORDINATES. Vectors and Parametric Equations. Arc Length. Polar Coordinates. Curves in Polar Coordinates. Areas in Polar Coordinates. Review Exercises. 9. THREE-DIMENSIONAL SPACE; PARTIAL DERIVATIVES; MULTIPLE INTEGRALS. Surfaces in Three Dimensions. Partial Derivatives. Applications of Partial Derivatives. Curve Fitting. Integrated Integrals. Volumes by Double Integration. Mass, Centroids, and Moments of Inertia. Volumes in Cylindrical Coordinates. Review Exercises. 10. INFINITE SERIES. Introduction to Infinite Series. Tests for Convergence. Maclaurin Series. Operations with Series. Computations with Series; Applications. Fourier Series. Review Exercises. 11. FIRST-ORDER DIFFERETIAL EQUATIONS. What is Differential Equation? Separation of Variables. First-Order Linear Differential Equations. Applications of First-Order Differential Equations. Numerical Solutions. Review Exercises. 12. HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS. Higher-Order Homogeneous Differential Equations. Auxiliary Equations with Repeating or Complex Roots. Nonhomogeneous Equations. Applications of Second-Order Equations. Review Exercises. 13. THE LAPLACE TRANSFORM. Introduction and Basic Properties. Inverse Laplace Transforms. Partial Fractions. Solutions of Linear Equations by Laplace Transforms. Review Exercises. Appendix A: Tables. Common Units of Measure. A Short Table of Integrals. Appendix B: Answers to Selected Exercises. Index.

## Interviews

1. INTRODUCTION TO ANALYTIC GEOMETRY. The Cartesian Coordinate System. The Slope. The Straight Line. Curve Sketching. Discussion of Curves with Graphing Utilities. The Conics. The Circle. The Parabola. The Ellipse. The Hyperbola. Translation of Axes; Standard Equations of the Conics. Review Exercises. 2. INTRODUCTION TO CALCULUS: THE DERIVATIVE. Functions and Intervals. Limits. The Derivative. The Derivative by the Four-Step Process. Derivatives of Polynomials. Instantaneous Rates of Change. Differentiation Formulas. Implicit Differentiation. Higher Derivatives. Review Exercises. 3. APPLICATIONS OF THE DERIVATIVE. The First-Derivative Test. The Second-Derivative Test. Exploring with Graphing Utilities. Applications of Minima and Maxima. Related rates. Differentials. Review Exercises. 4. THE INTEGRAL. Antiderivatives. The Area Problem. The Fundamental Theorem of Calculus. The Integral: Notation and General Definition. Basic Integration Formulas. Area Between Curves. Improper Integrals. The Constant of Integration. Numerical Integration. Review Exercises. 5. APPLICATION OF THE INTEGRAL. Means of Root Mean Squares. Volumes of Revolution: Disk and Washer Methods. Volumes of Revolution: Shell Method. Centroids. Moments of Inertia. Work and Fluid Pressure. Review Exercises. 6. DERIVATIVES OF TRANSCENDENTAL FUNCTIONS. Review of Trigonometry. Derivatives of Sine and Cosine Functions. Other Trigonometric Functions. Inverse Trigonometric Functions. Derivatives of Inverse Trigonometric Functions. Exponential and Logarithmic Functions. Derivative of the Logarithmic Function. Derivative of the Exponential Function. L'Hospital's rule. Applications. Newton's Method. Review Exercises. 7. INTEGRATION TECHNIQUES. The Power Formula Again. The Logarithmic and Exponentials Forms. Trigonometric Forms. Further Trigonometric Forms. Inverse Trigonometric Forms. Integration by Trigonometric Substitution. Integration by Parts. Integration of Rational Functions. Integration by Use of Tables. Additional Remarks. Review Exercises. 8. PARAMETIC EQUATIONS, VECTORS, AND POLAR COORDINATES. Vectors and Parametric Equations. Arc Length. Polar Coordinates. Curves in Polar Coordinates. Areas in Polar Coordinates. Review Exercises. 9. THREE-DIMENSIONAL SPACE; PARTIAL DERIVATIVES; MULTIPLE INTEGRALS. Surfaces in Three Dimensions. Partial Derivatives. Applications of Partial Derivatives. Curve Fitting. Integrated Integrals. Volumes by Double Integration. Mass, Centroids, and Moments of Inertia. Volumes in Cylindrical Coordinates. Review Exercises. 10. INFINITE SERIES. Introduction to Infinite Series. Tests for Convergence. Maclaurin Series. Operations with Series. Computations with Series; Applications. Fourier Series. Review Exercises. 11. FIRST-ORDER DIFFERETIAL EQUATIONS. What is Differential Equation? Separation of Variables. First-Order Linear Differential Equations. Applications of First-Order Differential Equations. Numerical Solutions. Review Exercises. 12. HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS. Higher-Order Homogeneous Differential Equations. Auxiliary Equations with Repeating or Complex Roots. Nonhomogeneous Equations. Applications of Second-Order Equations. Review Exercises. 13. THE LAPLACE TRANSFORM. Introduction and Basic Properties. Inverse Laplace Transforms. Partial Fractions. Solutions of Linear Equations by Laplace Transforms. Review Exercises. Appendix A: Tables. Common Units of Measure. A Short Table of Integrals. Appendix B: Answers to Selected Exercises. Index.