The Alkali Metal Ions in Biology: I. The Alkali Metal Ions in Isolated Systems and Tissues. II. The Alkali Metal Ions in the Organism

The Alkali Metal Ions in Biology: I. The Alkali Metal Ions in Isolated Systems and Tissues. II. The Alkali Metal Ions in the Organism


Use Standard Shipping. For guaranteed delivery by December 24, use Express or Expedited Shipping.

Product Details

ISBN-13: 9783642492488
Publisher: Springer Berlin Heidelberg
Publication date: 04/09/2012
Series: Handbook of Experimental Pharmacology , #13
Edition description: 1959
Pages: 598
Product dimensions: 7.01(w) x 10.00(h) x 0.05(d)

Table of Contents

I: The alkali metal ions in isolated systems and tissues.- I. General introduction.- II. Physical and chemical properties of the alkali metal ions.- a) Introduction.- b) Chemical properties.- c) Chemical binding.- d) Chelates with low-molecular anions.- e) Binding by ion exchange resins.- f) Binding by phosphate esters and polyphosphates.- g) Binding by nucleic acids.- h) Binding by polyvalent acid polysaccharides.- i) Binding by proteins.- III. Role of alkali metal ions in enzymatic processes.- a) Introduction.- b) Specific effects on enzymatic processes.- 1. Pyruvic phosphoferase.- 2. Fructokinase.- 3. Bacterial hexokinase.- 4. Phosphofructokinase.- 5. Acetate-activating enzyme (and “choline acetylase”).- 6. Phosphotransacetylase.- 7. Glutathione synthesizing enzyme system.- 8. Aldehyde dehydrogenase (from yeast).- 9. ?-galactosidase (from Escherichia coli).- 10. Apyrase (brain adenosinetriphosphatase).- 11. Bacterial apyrase.- 12. ATP-ase from crab nerve.- 13. Myosin ATP-ase.- 14. Urease.- c) Non-specific effects of alkali metal ions.- d) Comments.- IV. Effect of alkali metal ions on mitochondria.- V. Metabolic effects on tissues and tissue slices.- a) Effects on oxygen consumption.- 1. Brain slices.- 2. Peripheral nerve.- 3. Liver slices.- 4. Muscle.- 5. Kidney slices.- 6. Isolated frog skin.- b) Effects on glycolysis.- c) Effect on acetyl choline synthesis.- d) Effect on glycogen synthesis.- e) Effects on fatty acid metabolism.- f) Effects on cellular accumulation of various substances.- g) Morphogenetic effects of lithium.- 1. The effects of lithium.- 2. Mechanism of the Li effect.- VI. Distribution of the alkali metal ions between cells and their surroundings.- a) General remarks.- b) State of potassium in living cells.- c) State of Rb and Cs in living cells.- d) State of sodium in living cells.- VII. Active and passive transport of the alkali metal ions.- A. Characterization and biological role.- a) Introduction.- b) Passive transport.- c) “Simple” passive transport.- d) The flux ratio.- e) The effect of solvent drag.- f) Passive permeability and membrane structure.- g) Permeability of intercellular cements.- h) Ionic permeability and the development of bioelectric potentials.- i) Active transport of the alkali metal ions (The „Sodium pump“).- j) Relation of the active transport to metabolism.- k) Quantitative relationship between oxygen consumption and active ion transport.- 1) Temperature dependency of the “sodium pump”.- m) Effects of drugs and hormones on active and passive transport.- 1. Steroid hormones.- 2. Cardiac glycosides and their aglucones.- 3. Different Hormones.- Acetyl choline.- Histamine.- Adrenaline.- Neurohypophyseal hormones.- n) Role of alkali ion transport in the regulation of the volume of living cells.- o) Mechanisms proposed for the active transport of alkali metal ions.- 1. Simple membrane-carrier transport.- 2. Electron-linked carrier transport.- 3. Propelled carrier transport.- 4. “Asymmetrically collapsing lattice” theories.- 5. The fluid circuit mechanisms.- 6. Pinocytosis.- B. Transport between cells and their surroundings.- a) Erythrocytes.- 1. Transport of potassium in human erythrocytes.- 2. Transport of sodium in human erythrocytes.- 3. Effect of pH on the Na transport.- 4. Effect of temperature.- 5. Transport of Li in human erythrocytes.- 6. Transport of Rb in human erythrocytes.- 7. Transport of Cs in human erythrocytes.- 8. Evidence for a coupling between active sodium extrusion and potassium uptake.- 9. Relation of the active and passive transports to metabolism.- 10. Effects of cardiac glucosides on the transport processes.- 11. Ion transport by red cell “ghosts”.- 12. Mechanism of the active transport.- 13. Nature of the diffusion of alkali metal ions through the erythrocyte membrane.- 14. Alkali metal ion transport in other mammalian red cells.- 15. Transport of K and Na in bird red cells.- 16. Transport of K and Na in red cells of lower vertebrates.- b) Muscle.- 1. Development of the “sodium pump” concept.- 2. Net transports of K and Na in muscle.- 3. The sodium flux across the frog-muscle fibre membrane.- 4. Energy requirement of the active Na transport in frog muscle.- 5. The potassium fluxes of frog muscle.- 6. The potassium fluxes of mammalian muscle.- 7. Alkali metal ion shifts in relation to muscular activity.- c) Peripheral nerve.- 1. Movements of potassium and sodium in the resting nerve.- 2. Effect of temperature on cation fluxes in nerve.- 3. Active transport of Na in cephalopod giant axons.- 4. Coupling between Na-outflux and K-influx.- 5. Nature of the passive movement of K through the cephalopod giant axon membrane.- 6. Passive potassium transport during current flow.- 7. Passive transport of Na through the giant fibre membrane.- 8. Potassium and sodium shifts during activity.- d) Leucocytes.- e) Brain slices and isolated retina.- f) Mouse ascites carcinoma cells.- g) Liver slices.- h) Kidney cortex slices.- i) Seminal vesicle mucosa.- j) Yeast cells.- k) Ulva lactuca.- 1) Halicystis and Valonia.- m) Nitellopsis (Characeae).- n) Higher plants.- C. Transport through epithelial membranes.- a) Introduction.- b) The amphibian skin.- 1. The active sodium transport of the frog skin and its relation to the skin potential.- 2. The relation between oxygen consumption and active sodium transport.- 3. The work performed by the active sodium transport mechanism.- 4. The electromotive force of the active sodium transport.- 5. Inhibitors of the active sodium transport.- 6. Stimulants of active sodium transport.- 7. The action of neurohypophyseal hormones upon the transfer of water and salt across the frog skin.- 8. The relationship between active sodium transport and transport of water across the skin.- c) The rumen of ruminants.- d) The toad urinary bladder.- e) Intestinal mucosa.- 1. Net transport of sodium.- 2. The dependency of the sodium transport upon different factors.- 3. The unidirectional sodium fluxes.- 4. Intestinal potentials and their relation to active sodium transport.- 5. The transport of potassium across the intestinal wall.- f) Kidney tubulus.- g) The Malpighian tubules of insects.- h) The formation of the endolymph.- i) Active K transport in the formation of bull seminal plasma.- j) The gills of Eriocheir sinensis (The “woolhanded crab”).- VIII. Relation of the alkali metal ions to bioelectric phenomena.- A. Relation to maintained potentials.- a) Introduction.- b) Effect of K on the resting potential of muscle and nerve.- 1. Striated muscle.- 2. Heart muscle.- 3. Smooth muscle.- 4. Nerve.- c) Dependency of the K effect upon other ion species.- d) Effect of external Na upon the resting potential of nerve and muscle.- e) Effects of the non-biological alkali metal ions upon the resting potential.- B. Relation to the electric activity of nerve and muscle.- a) The “sodium” theory of excitation (Hodgkin-Huxley-Katz).- b) The relation of the external Na concentration to the action potential of single nerve fibres.- c) Effect of Li upon the action potential of single nerve fibres.- d) Relation of K to the action potential of single nerve fibres.- e) The contributions of Na and K to the membrane current in squid axons.- f) The applicability and limitations of the sodium theory of electric activity.- g) Effect of external Na concentration upon excitation and conduction.- 1. Effects on nerve.- 2. The nerve sheath as a diffusion barrier.- 3. Effects on striated muscle.- 4. Effects on heart muscle.- h) Effect of internal Na concentration on electric activity in muscle.- i) Effects of K upon excitation and conduction.- 1. Nerve.- 2. Striated muscle.- 3. Heart muscle.- C. Relations to the electric activity of neuromuscular junctions and synapses.- a) Neuromuscular junctions.- 1. Effects of Na.- 2. Effects of potassium.- b) The sub-synaptic membrane.- D. Relation to the electric activity of electric organs.- IX. Role of the alkali metal ions in muscular contraction.- A. Introduction: Non-living models.- B. Effects on skeletal muscle.- a) Effects of Na.- b) Effects of K.- 1. Introduction.- 2. Potassium contracture.- 3. Effects of K on the mechanical response.- 4. The Fleckenstein hypothesis.- C. Effects on heart muscle.- a) Introduction.- b) Temperature and ionic effects on the heart.- c) Effects on the heart rate (the rhythm).- d) Effects upon the mechanical response of the heart.- e) The Hajdu hypothesis.- 1. The “staircase” phenomenon.- 2. Potassium ions and the development of tension.- 3. Potassium ions and contracture.- 4. Effect of Na upon the staircase.- 5. Formulation of the hypothesis.- D. Effects on smooth muscle.- a) Effect of sodium ions.- 1. Intestinal muscle.- 2. Uterus muscle.- b) Effect of potassium ions.- 1. Intestinal muscle.- 2. Uterus muscle.- 3. Vascular muscle.- Part: II The alkali metal ions in the organism.- I. Introduction.- II. Distribution of alkali metals in body compartments and tissues.- A. The sodium and potassium of the extracellular compartment (and some tissues built mainly of extracellular components).- a) Blood plasma.- b) Lymph.- c) Interstitial spaces.- d) Tendon.- e) Corium.- f) Cornea.- B. The sodium and potassium of cartilage and bone.- a) Cartilage.- b) Bone.- Amount of sodium in bone.- Nature of sodium in bone.- “Availability”, function of sodium in bone.- C. The sodium and potassium of fluids contained in special extracellular cavities.- a) Synovial fluid.- b) Cerebrospinal fluid.- c) Aqueous humour.- d) Vitreous humour.- e) Endolymph, perilymph.- f) Amniotic fluid.- g) Transport over placenta.- D. The sodium and potassium of different tissues mainly composed of cells.- a) Introduction.- b) Epidermis, lens.- c) Muscular tissues.- d) Blood cells.- e) Neural tissues.- f) Glandular tissues.- g) Miscellaneous.- E. Distribution of lithium, rubidium and cesium.- Distribution of naturally occurring lithium.- Distribution of lithium after administration.- Distribution of naturally occurring rubidium.- Distribution of rubidium after administration.- Distribution of naturally occurring cesium.- Distribution of cesium after administration.- III. Total body contents of sodium and potassium. Total exchangeable sodium and potassium.- A. Total body contents.- B. Total exchangeable sodium and potassium (Nae
, Ke).- C. Relation between total body contents and total exchangeable contents.- D. Relation between isotope dilution data and data from metabolic balance studies.- E. Relation between Nae and Ke and serum concentrations.- VI. Handling of alkali metal ions by the kidney.- A. Introduction.- B. Processes involved in tubular transport of water and the predominant ions of plasma; their nature and localization.- a) The proximal tubules.- b) The distal tubular system.- Distal tubular processes concerned with water (and salt) reabsorption.- Distal reabsorption of sodium (and secretion of potassium).- Concluding remarks.- C. Transport of fluid in the nephron as a whole (relationship between glomerular and tubular factors).- D. Physical factors (pressures) affecting sodium (and water) excretion.- a) Effect of changes in the oncotic pressure of plasma.- b) Effect of changes in renal arterial pressure.- c) Effect of increase in ureteral (pelvic) pressure.- d) Effect of elevation of renal venous pressure.- e) Effects of pressures acting on the outside of the kidney.- E. Effects of changes in plasma sodium (and chloride) concentration on sodium excretion.- F. “Osmotic diuresis” and sodium (and potassium) excretion.- G. Interrelationship between urinary acidification and sodium and potassium excretion.- a) Potassium excretion as related to sodium excretion.- b) The effects of primary changes in the acid-base status of the body fluids.- Hyperventilation (respiratory alkalosis).- Increased pCO2 (respiratory acidosis).- Effects of non-respiratory (“metabolic”) alkalosis on potassium excretion.- Potassium excretion in non-respiratory acidosis.- c) The effects of potassium deficiency and potassium excess.- Effects of potassium deficiency upon bicarbonate reabsorption.- Effects of administration of potassium salts (potassium excess).- d) The effects of carbonic anhydrase inhibitors.- H. Hormonal factors affecting the renal handling of sodium, potassium (and water).- a) Hormones of the adrenal cortex and other steroids.- Effects of adrenocortical insufficiency.- Natural corticosteroids.- Effects of corticoids on renal sodium and potassium excretions (and renal function in general).- Corticoid derivatives.- Licorice extract.- Progesterone.- Oestrogens.- Androgens.- b) Hormones of the adrenal medulla.- c) Hormones of the adenohypophysis.- d) Neurohypophyseal hormones.- Vasopressin (antidiuretic hormone, ADH, ?-hypophamine).- Oxytocin.- e) Hormones of the pancreas.- Insulin.- Glucagon.- f) Miscellaneous.- Renin and hypertensin.- Serotonin.- I. Effect of the renal nerves and sympathicomimetic amines on sodium and potassium excretion.- a) The renal nerves.- b) Effects of sympathomimetic amines.- J. Influence of the central nervous system on body contents and renal excretion of sodium (and water).- K. Effects of changes in the state of the cardiovascular system on sodium excretion.- a) Effects of changes in total blood volume.- b) Procedures causing redistribution of the blood volume.- c) Influence of posture.- d) Sodium retention in circulatory failure (formation of cardiac oedema).- L. Effect of exercise on renal sodium excretion.- M. Diurnal variations in the renal excretion of sodium and potassium.- N. Diuretic and natriuretic agents.- a) Introduction (definitions and types of diureses).- b) Water.- c) Osmotic diuretics.- d) Salts.- e) Acidifying diuretics.- f) Mercurial diuretics.- The typical response.- Mechanism of the renal response.- Cellular site of action.- Factors influencing the diuretic response to mercurials.- Effects of mercurials on urinary potassium excretion.- g) Xanthine diuretics.- The typical response.- The mechanism of xanthine diuresis.- h) Diuretics chemically related to xanthines.- i) Unsubstituted sulphonamides (carbonic anhydrase inhibitors).- j) Chlorothiazide (and derivatives).- k) Antialdosterones.- O. The renal excretion of lithium, rubidium and cesium.- a) Lithium.- b) Rubidium and cesium.- c) Note on thallous ions.- P. Transport of sodium and potassium across the urinary bladder wall.- V. Handling of alkali metals by exocrine glands other than the kidney.- A. The duct possessing glands.- a) Introduction.- The outward transfer of electrolytes.- The morphological site of the outward transport of electrolytes.- The reabsorption of sodium.- The morphological site of sodium reabsorption.- Glandular sodium and potassium balance during secretion.- Glandular oxygen consumption in relation to electrolyte transport.- Factors affecting sodium and potassium excretion by the duct-possessing glands 436..- Criticism of the present theory of sodium and potassium secretion.- b) The sweat glands.- Type of gland.- Rate of secretion.- Skin temperature.- Duration of secretion.- Type of stimulus.- Plasma concentration of Na und K.- Glandular blood flow.- Adaptation to salt depletion.- Adrenal cortical steroids.- Drugs.- Individual differences in sweat composition.- The secretion of Li, Cs and Rb.- The effect of prolonged sweating on the homeostasis of water, sodium and potassium.- Water loss.- Electrolyte loss.- Replacements.- The effect of sweating without replacement of water and salt.- The effect of sweating with replacement of water but not of salt.- The effect of sweating with replacement of salt but not of water loss.- c) The salivary glands.- Type of gland.- Rate of secretion.- Gland temperature.- Duration of secretion.- Type of stimulation.- Glandular blood flow.- Plasma concentration of Na and K.- Salt depletion.- Adrenal cortical steroids.- The effect of various drugs.- Individual variations.- The secretion of Li, Cs and Rb.- d) The pancreatic gland.- Rate of secretion.- Duration of secretion.- Type of stimulation.- Plasma concentration of the alkali metals.- The effect of certain drugs.- Individual variations.- e) The lacrymal gland.- Rate of secretion.- Duration of secretion.- Plasma concentration.- B. The glands of the gastrointestinal tract.- a) The oesophageal glands.- b) The gastric mucosa.- Type of gland.- Rate of secretion.- Type of stimulus.- Duration of secretion.- Plasma concentrations of Na and K (total osmolar concentration).- Mucosal blood flow and oxygen supply.- Gland temperature.- Salt depletion and adreno-cortical steroids.- Individual differences.- The secretion of lithium.- The alkali metal content of the gastric mucosa.- Mechanism of alkali metal secretion.- c) The intestinal mucosa.- Type of gland.- Rate of secretion.- Plasma concentration of the alkali metals (total osmolar concentration of the plasma).- The alkali metals in the intestine.- The mechanism of intestinal secretion.- C. The liver and the gall bladder.- a) Hepatic bile.- Collection of hepatic bile.- The electrolyte composition of hepatic bile.- Rate of secretion.- Plasma concentration of the alkali metals (total osmolar concentration of the plasma).- Hepatic blood flow and oxygen supply.- Temperature.- The excretion of lithium in the hepatic bile.- The mechanism of alkali metal excretion in the bile.- b) Gall bladder bile.- The electrolyte composition of gall bladder bile.- The reabsorptive functions of the gall bladder.- The secretory functions of the gall bladder.- c) The alkali metals in hepatic tissue.- D. The mammary gland.- E. Male organs of reproduction.- F. Female organs of reproduction.- G. The glands of the respiratory tract.- H. Concluding remarks on glandular secretion.- VI. Intestinal absorption of alkali metal ions.- A. Introduction.- B. Resins and intestinal absorption of alkali metal ions.- Properties of ion exchange resins.- The state of charging of resins present in the intestinal contents.- C. Influence of corticoids on intestinal absorption of alkali metal ions.- D. Use of resin therapy for potassium depletion.- E. Intestinal lavage as a measure to correct electrolyte imbalances.- F. Intestinal absorption as a problem in ureterocolic anastomoses.- VII. Intakes and general turnovers.- A. Intakes.- a) Contents in food components.- b) Normal intakes.- c) Diets ensuring low intakes.- B. Daily turnovers.- VIII. Effects of excesses and deficits.- A. Introduction (remarks on homeostasis).- B. Effects of sodium loading.- a) Acute.- b) Chronic.- C. Effects of potassium loading.- a) Acute.- b) Chronic.- D. Effects of lithium loading.- Gastrointestinal tract.- Muscular and nervous systems.- Circulation.- Kidneys.- Treatment of lithium intoxication.- E. Effects of rubidium loading.- a) Acute.- b) Chronic.- F. Effects of cesium loading.- a) Acute.- b) Chronic.- c) Factors influencing the excretion of cesium.- G. Sodium depletion.- a) Acute.- b) Chronic.- H. Potassium depletion.- a) Acute.- b) Chronic.- I. Function of rubidium and cesium in replacement of potassium.- J. Influence of age on the efficiency of homeostasis.- IX. Internal shifts and displacements of alkali metal ions.- A. Mobilization from or deposition in extracellular structures, especially bone.- B. Factors affecting the distribution of alkali metals between cells and extracellular fluid.- a) Hormones.- b) Excesses or deficits — primary changes in pH.- Author Index.

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews