The Chemistry of Transition Metal Carbides and Nitrides

The Chemistry of Transition Metal Carbides and Nitrides

by S.T. Oyama

Paperback(Softcover reprint of the original 1st ed. 1996)

Want it by Monday, November 19 Order now and choose Expedited Shipping during checkout.

Product Details

ISBN-13: 9789401071994
Publisher: Springer Netherlands
Publication date: 03/20/2013
Edition description: Softcover reprint of the original 1st ed. 1996
Pages: 536
Product dimensions: 6.10(w) x 9.25(h) x 0.05(d)

Table of Contents

1 Introduction to the chemistry of transition metal carbides and nitrides.- Abstract.- 1.1 Introduction.- 1.2 Crystalline structure and composition.- 1.3 Bonding and electronic properties.- 1.4 Physical properties.- 1.5 Electric and magnetic properties.- 1.6 Preparation.- 1.6.1 Low surface area materials.- 1.6.2 Powders, particles and supported forms.- 1.6.3 Films and coatings.- 1.7 Applications.- 1.8 Catalysis and surface studies.- References.- Physical Properties.- 2 Application of transition metal carbides and nitrides industrial tools.- Abstract.- 2.1 Introduction.- 2.2 Cemented carbides and nitrides.- 2.2.1 Manufacture.- 2.3 Cemented carbides for machining applications.- 2.3.1 Tools and toolholding.- 2.3.2 Tool wear mechanisms.- 2.3.3 Compositions and properties.- 2.3.4 Coated carbides.- 2.3.5 Tailored substrates.- 2.4 Cemented carbide tools for non-machining applications.- 2.4.1 Compositions and microstructures.- 2.4.2 Metalforming applications.- 2.4.3 Structural components.- 2.4.4 Fluid-handling components.- 2.4.5 Transportation and construction applications.- 2.4.6 Mining and drilling for oil and gas.- 2.4.7 Diamond cutting tools.- 2.5 Concluding remarks.- Acknowledgment References.- General references.- 3 Review of diffusion and vaporization of Group 4 and 5 transition metal carbides.- Abstract.- 3.1 Introduction.- 3.2 Modeling the vaporization behavior of non-stoichiometric carbides.- 3.3 Modeling the chemical diffusion of non-stoichiometric carbides.- 3.4 Derivation of diffusion-coupled vaporization equations.- 3.5 Derivations of a diffusion-coupled varporization equation for protective coatings.- 3.6 Application of the vaporization models.- 3.7 Application of the vaporization model to MC coatings on graphite.- Acknowledgments.- References.- 4 Chemical diffusion in transition metal-carbon and transition metal-nitrogen systems.- Abstract.- 4.1 Introduction.- 4.2 Experimental.- 4.2.1 Preparation techniques.- 4.2.2 X-ray diffraction.- 4.2.3 Metallography.- 4.2.4 Electron-probe microanalysis.- 4.3 Results and discussion.- 4.3.1 Phase equilibria.- 4.3.2 Carbon and nitrogen diffusivities.- 4.4 Conclusion.- Acknowledgments.- Reference.- Theory.- 5 The origins of the similarities between late transition metals and early transition metal monocarbides.- Abstract.- 5.1 Introduction.- 5.2 Bonding of the B1 monocarbides.- 5.3 Bonding of fcc metals.- 5.4 Band structures of the monocarbides.- 5.5 Conclusion.- Acknowledgments.- References.- 6 Fermi surface of hexagonal tungsten carbide.- Abstract.- 6.1 Introduction.- 6.2 Experimental.- 6.3 Results and discussion.- 6.3.1 Low-temperature magnetoresistance.- 6.3.2 de Haas-van Alphen data.- 6.3.3 Experimental Fermi surfaces.- 6.4 Conclusions.- Acknowledgements.- References.- 7 Orbital symmetry and superconductivity in carbides and borocarbides.- Abstract.- 7.1 Introduction.- 7.1.1 Summary of computational approaches.- 7.1.2 Boron vs. carbon.- 7.1.3 Molecular orbital analysis of diatomic and triatomic fragment.- 7.2 Superconductivity and the isolobal analogy.- 7.2.1 Electronic structure of dicarbides.- 7.2.2 Electronic structure of borocarbides.- 7.2.3 The isolobal analogy.- 7.2.4 Transition temperatures.- Acknowledgments.- References.- New Materials.- 8 Recent developments in ternary nitride chemistry.- Abstract.- 8.1 Introduction.- 8.2 Synthesis of ternary and quaternary nitrides.- 8.3 Lithium-containing ternary and quaternary nitrides.- 8.4 Other alkali metal-containing ternary nitrides.- 8.5 Alkaline earth-containing ternary nitrides.- 8.6 Transition metal ternary nitrides.- 8.7 Properties.- 8.8 Conclusions.- Acknowledgment.- References.- 9 Transition metal-based double nitrides.- Abstract.- 9.1 Introduction.- 9.2 High-pressure synthesis of (Nb1?xMx)N(M = Al, Ga, In) solid solution.- 9.3 New ternary nitrides between alkaline earth and 3d-transition metals.- 9.3.1 The new compound SrNiN and the (Ca1?xSrx)NiN (0— X— 0.5) solid solution with [Ni-N]2? infinite chain.- 9.3.2 The new compound Ca3CoN3 with a trigonal planar [CON3]6? anion.- 9.4 Rf-sputter deposition of metastable metal nitrides and their solid solutions.- 9.5 Conclusion.- References.- 10 Magnetic properties of rare earth-iron compounds containing carbon and/or nitrogen.- Abstract.- 10.1 Introduction.- 10.2 Crystallography and magnetism.- 10.3 Experimental.- 10.3.1 Materials.- 10.3.2 Plasma reactions.- 10.3.3 Ball-milling.- 10.3.4 High-pressure sintering.- 10.3.5 Zinc metal addition.- 10.3.6 Characterization.- 10.4 Results and discussion.- 10.4.1 Addition effect of Co and C on Sm2Fe17.- 10.4.2 Plasma nitriding and carbonitriding.- 10.4.3 Grinding of Sm2Fe17Xy.- 10.4.4 High-pressure sintering of Sm2Fe17Xy.- 10.5 Conclusions.- Acknowledgments.- References.- Synthesis.- 11 The synthesis of titanium nitride and titanium carbonitride by self-propagating combustion.- Abstract.- 11.1 Introduction.- 11.2 Experimental.- 11.3 Results.- 11.4 Discussion.- 11.5 Conclusion.- References.- 12 Combustion synthesis of transition metal nitrides.- Abstract.- 12.1 Combustion synthesis of transition metal nitrides: an overview.- 12.2 Experimental.- 12.2.1 Reactor assembly.- 12.2.2 Chemicals, experimental procedure and characterization.- 12.3 Combustion of transition metals in nitrogen: experimental observations.- 12.3.1 Melting and the effect of solid phase dilution on conversion.- 12.3.2 Effect of nitrogen pressure on combustion characteristics.- 12.3.3 Effect of metal particle size and morphology.- 12.4 Summary.- References.- 13 New route to molybdenum nitrides and oxynitrides: preparation and characterization of new phases.- Abstract.- 13.1 Introduction.- 13.2 Cubic—-Mo2N type oxynitride phase.- 13.2.1 Synthesis conditions.- 13.2.2 Chemical analysis.- 13.2.3 X-ray and neutron diffraction analysis.- 13.2.4 Powder aging and regeneration.- 13.2.5 Long time nitriding.- 13.2.6 Orthorhombic distortion of the cubic phase.- 13.3 New—-Mo2C type molybdenum nitride modification.- 13.3.1 Introduction.- 13.3.2 Experimental.- 13.3.3 Results and discussion.- 13.4 Hexagonal—-MoN type nitride phases.- 13.4.1 Introduction.- 13.4.2 A new method of preparing nitrides by using sulphides.- 13.4.3 Results and discussion.- 13.4.4 High surf ace area MoS2 precursor.- 13.5 Conclusion.- References.- 14 Synthesis of thin films of Cr, Mo and W carbides and nitrides.- Abstract.- 14.1 Introduction.- 14.2 Experimental.- 14.3 Results and discussion.- 14.3.1 Phase formation.- 14.3.2 Purity of the films.- 14.3.3 Orientation of the films.- 14.3.4 Ordered phases.- 14.4 Conclusion.- Acknowledgments.- References.- 15 Single-source precursors for the chemical vapor deposition of titanium and vanadium carbide and nitride.- Abstract.- 15.1 Introduction.- 15.2 Guidelines for the design of the precursors.- 15.3 Experimental section.- 15.4 Study with the Ti-C-N system.- 15.4.1 Precursors to titanium carbide.- 15.4.2 Precursors to titanium nitride.- 15.5 Study within the V-C-N system.- 15.5.1 Precursors to vanadium carbide.- 15.5.2 Precursors to vanadium nitride.- 15.6 Conclusion.- Acknowledgments.- References.- Catalysis.- 16 Carbides of transition metals as catalysts for oxidation reactions.- Abstract.- 16.1 Introduction.- 16.2 Carbide catalysts and their characterization.- 16.2.1 Materials.- 16.2.2 Heats of oxygen adsorption.- 16.2.3 Influence of adsorbed oxygen on carbide work functions.- 16.3 Oxidation of hydrogen.- 16.3.1 Catalysis under excess oxygen.- 16.3.2 Catalysis under excess hydrogen.- 16.4 Oxidation of carbon monoxide.- 16.5 Oxidation of ammonia.- 16.6 Carbides-NO2interaction.- 16.7 Oxidative coupling of methane.- 16.8 Conclusions.- Acknowledgments.- References.- 17 Surface molybdenum species and acid sites on nitrided moly bdena-alumina catalysts.- Abstract.- 17.1 Introduction.- 17.2 Experimental.- 17.2.1 Reagents and catalyst.- 17.2.2 Catalyst preparation.- 17.2.3 Characterization.- 17.3 Results and discussion.- 17.3.1 Surface composition and surface species.- 17.3.2 Surface acidity.- 17.3.3 The nature of acid sites.- 17.3.4 Surface active sites.- 17.4 Conclusions.- Acknowledgements.- References.- 18 Carbide-oxide interactions in bulk and supported tungsten carbide catalysts for alcohol synthesis.- Abstract.- 18.1 Introduction.- 18.2 Experimental.- 18.3 Results.- 18.3.1 Bulk tungsten carbide.- 18.3.2 Supported tungsten carbide.- 18.4 Discussion.- 18.4.1 Bulk tungsten carbide.- 18.4.2 Supported tungsten carbide.- 18.5 Conclusion.- References.- 19 Fischer-Tropsch synthesis and XRD characterization of an iron carbide catalyst synthesized by laser pyrolysis.- Abstract.- 19.1 Introduction.- 19.2 Experimental.- 19.3 Results and discussion.- 19.3.1 Activity.- 19.3.2 Characterization.- 19.4 Conclusions.- Acknowledgments.- References.- 20 Study of the isomerization of C6 and C6+ alkanes over molybdenum oxycarbide catalysts.- Abstract.- 20.1 Introduction.- 20.1.1 Catalyst and process development.- 20.1.2 New carbide catalysts.- 20.2 Experimental.- 20.2.1 Materials and catalyst preparation.- 20.2.2 Catalyst testing apparatus and product analysis.- 20.2.3 Characterization techniques.- 20.3 Results.- 20.3.1 C6–C8 alkane isomerization at atmospheric pressure.- 20.3.2 Effect of pressure on the isomerization of n-heptane and n-octane.- 20.3.3 Isomerization selectivity at high conversion.- 20.4 Discussion.- 20.5 Conclusion.- Acknowledgments.- References.- 21 Characterization of oxygen-treated carbides of molybdenum and tungsten for n-hexane-dihydrogen reactions.- Abstract.- 21.1 Introduction.- 21.2 Experimental.- 21.3 Results.- 21.3.1 n-Hexane—H2 reactions.- 21.3.2 Catalyst characterization.- 21.4 Discussion.- 21.5 Conclusions.- Acknowledgment.- References.- 22 Synthesis and catalytic properties of tungsten carbide for isomerization, reforming and hydrogenation.- Abstract.- 22.1 Introduction.- 22.2 Experimental.- 22.2.1 Preparation of unsupported tungsten carbide, W2C.- 22.2.2 Preparation of W2C/SiC/Al2O3.- 22.2.3 Preparation of W2C/zeolite Y.- 22.2.4 Catalyst evaluation.- 22.3 Results and discussion.- 22.3.1 Carbide synthesis.- 22.3.2 n-Heptane isomerization over unsupported W2C.- 22.3.3 Sulfur resistance of W2C.- 22.3.4 n-Heptane reforming over W2C/SiC/Al2O3.- 22.3.5 Thiophene hydrodesulfurization over unsupported W2C.- 22.3.6 Thiophene hydrogenation over W2C/zeolite Y.- 22.3.7 Acetonitrile hydrogenation over W2C/zeolite Y.- 22.4 Conclusions.- Acknowledgments.- References.- Spectroscopy and Microscopy.- 23 Chemisorption of CO and NO molybdenum carbide foils.- Abstract.- 23.1 Introduction.- 23.2 Experimental.- 23.3 Results.- 23.3.1 Sample activation.- 23.3.2 Chemisorption of CO and NO.- 23.4 Discussion.- 23.5 Conclusions.- Acknowledgment.- References.- 24 Characterization of the electronic and catalytic properties of vanadium carbide: a comparative study of VC/V(110) model surfaces and VC powder materials.- Abstract.- 24.1 Introduction.- 24.2 Experimental methods.- 24.3 Results and discussion.- 24.3.1 Preparation and characterization of VC/V(110) model surfaces.- 24.3.2 NEXAFS characterization of VC powder catalysts.- 24.3.3 Comparison of VC/V(110) with VC powder catalysts: a case study of the dehydrogenation of iso-butane on vanadium carbide.- 24.4 Conclusions.- Acknowledgments.- References.- 25 Surface shifts in core level energies of transition metal carbides and nitrides.- Abstract.- 25.1 Introduction.- 25.2 Surface core level shifts.- 25.2.1 Experimental surface shifts in metal and nonmetal levels.- 25.2.2 Estimates of surface core level shifts.- 25.3 Some application examples.- 25.4 Summary.- References.- 26 Study of the Auger metal peak of carbides and nitrides by factor analysis.- Abstract.- 26.1 Introduction.- 26.2 Theoretical considerations.- 26.2.1 Shape of the Auger peaks.- 26.2.2 Factor analysis applied to AES.- 26.3 Experimental.- 26.3.1 Preparation of the samples.- 26.3.2 Auger analysis.- 26.4 Results.- 26.4.1 W2N/W.- 26.4.2—-WC1?x/W.- 26.4.3 Bulk tungsten carbide.- 26.5 Discussion.- 26.5.1 Interpretation of the experimental data.- 26.5.2 The factor analysis method.- 26.6 Conclusion.- Acknowledgments.- References.- 27 Transition metal nitride and carbide nanoparticles.- Abstract.- 27.1 Introduction.- 27.2 Preparation of nitrides and carbides of Fe, Mo and W by CO2 laser pyrolysis.- 27.3 General properties of nanoscale carbides and nitrides of Fe, Mo and W.- 27.3.1 Fe carbide and nitride nanoparticles.- 27.3.2 Mo and W carbide and nitride nanoparticles.- 27.4 Structural characterization.- 27.4.1 X-ray diffraction.- 27.4.2 High resolution transmission electron microscopy (HR-TEM) studies.- 27.4.3 Chemical composition and surface characterization.- 27.5 Catalytic properties.- 27.5.1 Fe carbides.- 27.5.2 Catalytic activity of Mo2NxOy and Mo2CxOy for heteroatom removal.- 27.6 Conclusions.- Acknowledgments.- References.- 28 Carbide formation during activation of iron Fisher-Tropsch catalysts.- Abstract.- 28.1 Introduction.- 28.2 Experimental.- 28.3 Results.- 28.3.1 FT synthesis activity.- 28.3.2 Catalyst characterization.- 28.3.3 Sample microstructure after activation.- 28.3.4 Sample microstructure after activation and 10 h reaction.- 28.3.5 Sample microstructure after activation and 45 h reaction.- 28.3.6 XPS analysis.- 28.4 Discussion.- 28.4.1 The role of activation.- 28.4.2 The role of the carbide in F-T synthesis.- 28.5 Conclusions.- Acknowledgements.- References.- Indexes.

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews