The Lebesgue-Stieltjes Integral: A Practical Introduction

The Lebesgue-Stieltjes Integral: A Practical Introduction

by M. Carter, B. van Brunt

Paperback(Softcover reprint of the original 1st ed. 2000)

Use Standard Shipping. For guaranteed delivery by December 24, use Express or Expedited Shipping.

Product Details

ISBN-13: 9781461270331
Publisher: Springer New York
Publication date: 10/17/2012
Series: Undergraduate Texts in Mathematics
Edition description: Softcover reprint of the original 1st ed. 2000
Pages: 230
Product dimensions: 6.10(w) x 9.25(h) x 0.02(d)

Table of Contents

1 Real Numbers.- 1.1 Rational and Irrational Numbers.- 1.2 The Extended Real Number System.- 1.3 Bounds.- 2 Some Analytic Preliminaries.- 2.1 Monotone Sequences.- 2.2 Double Series.- 2.3 One-Sided Limits.- 2.4 Monotone Functions.- 2.5 Step Functions.- 2.6 Positive and Negative Parts of a Function.- 2.7 Bounded Variation and Absolute Continuity.- 3 The Riemann Integral.- 3.1 Definition of the Integral.- 3.2 Improper Integrals.- 3.3 A Nonintegrable Function.- 4 The Lebesgue-Stieltjes Integral.- 4.1 The Measure of an Interval.- 4.2 Probability Measures.- 4.3 Simple Sets.- 4.5 Definition of the Integral.- 4.6 The Lebesgue Integral.- 5 Properties of the Integral.- 5.1 Basic Properties.- 5.2 Null Functions and Null Sets.- 5.3 Convergence Theorems.- 5.4 Extensions of the Theory.- 6 Integral Calculus.- 6.1 Evaluation of Integrals.- 6.2 IWo Theorems of Integral Calculus.- 6.3 Integration and Differentiation.- 7 Double and Repeated Integrals.- 7.1 Measure of a Rectangle.- 7.2 Simple Sets and Simple Functions in Two Dimensions.- 7.3 The Lebesgue-Stieltjes Double Integral.- 7.4 Repeated Integrals and Fubini’s Theorem.- 8 The Lebesgue SpacesLp.- 8.1 Normed Spaces.- 8.2 Banach Spaces.- 8.3 Completion of Spaces.- 8.4 The SpaceL1.- 8.5 The LebesgueLp.- 8.6 Separable Spaces.- 8.7 ComplexLpSpaces.- 8.8 The Hardy SpacesHp.- 8.9 Sobolev SpacesWk,p.- 9 Hilbert Spaces andL2.- 9.1 Hilbert Spaces.- 9.2 Orthogonal Sets.- 9.3 Classical Fourier Series.- 9.4 The Sturm-Liouville Problem.- 9.5 Other Bases forL2.- 10 Epilogue.- 10.1 Generalizations of the Lebesgue Integral.- 10.2 Riemann Strikes Back.- 10.3 Further Reading.- Appendix: Hints and Answers to Selected Exercises.- References.

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews