Theory of the Nuclear Magnetic 1/T1 Relaxation Rate in Conventional and Unconventional Magnets
One of the best ways to "lift the lid" on what is happening inside a given material is to study it using nuclear magnetic resonance (NMR). Of particular interest are NMR 1/T1 relaxation rates, which measure how fast energy stored in magnetic nuclei is transferred to surrounding electrons.

This thesis develops a detailed, quantitative theory of NMR 1/T1 relaxation rates, and shows for the first time how they could be used to measure the speed at which energy travels in a wide range of magnetic materials.

This theory is used to make predictions for"Quantum Spin Nematics", an exotic form of quantum order analogous to a liquid crystal. In order to do so, it is first necessary to unravel how spin nematics transport energy. This thesis proposes a new way to do this, based on the description of quarks in high-energy physics.

Experiments to test the ideas presented are now underway in laboratories across the world.
1117774445
Theory of the Nuclear Magnetic 1/T1 Relaxation Rate in Conventional and Unconventional Magnets
One of the best ways to "lift the lid" on what is happening inside a given material is to study it using nuclear magnetic resonance (NMR). Of particular interest are NMR 1/T1 relaxation rates, which measure how fast energy stored in magnetic nuclei is transferred to surrounding electrons.

This thesis develops a detailed, quantitative theory of NMR 1/T1 relaxation rates, and shows for the first time how they could be used to measure the speed at which energy travels in a wide range of magnetic materials.

This theory is used to make predictions for"Quantum Spin Nematics", an exotic form of quantum order analogous to a liquid crystal. In order to do so, it is first necessary to unravel how spin nematics transport energy. This thesis proposes a new way to do this, based on the description of quarks in high-energy physics.

Experiments to test the ideas presented are now underway in laboratories across the world.
109.99 In Stock
Theory of the Nuclear Magnetic 1/T1 Relaxation Rate in Conventional and Unconventional Magnets

Theory of the Nuclear Magnetic 1/T1 Relaxation Rate in Conventional and Unconventional Magnets

by Andrew Smerald
Theory of the Nuclear Magnetic 1/T1 Relaxation Rate in Conventional and Unconventional Magnets

Theory of the Nuclear Magnetic 1/T1 Relaxation Rate in Conventional and Unconventional Magnets

by Andrew Smerald

Hardcover(2013)

$109.99 
  • SHIP THIS ITEM
    In stock. Ships in 6-10 days.
    Not Eligible for Free Shipping
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

One of the best ways to "lift the lid" on what is happening inside a given material is to study it using nuclear magnetic resonance (NMR). Of particular interest are NMR 1/T1 relaxation rates, which measure how fast energy stored in magnetic nuclei is transferred to surrounding electrons.

This thesis develops a detailed, quantitative theory of NMR 1/T1 relaxation rates, and shows for the first time how they could be used to measure the speed at which energy travels in a wide range of magnetic materials.

This theory is used to make predictions for"Quantum Spin Nematics", an exotic form of quantum order analogous to a liquid crystal. In order to do so, it is first necessary to unravel how spin nematics transport energy. This thesis proposes a new way to do this, based on the description of quarks in high-energy physics.

Experiments to test the ideas presented are now underway in laboratories across the world.

Product Details

ISBN-13: 9783319004334
Publisher: Springer International Publishing
Publication date: 08/11/2013
Series: Springer Theses
Edition description: 2013
Pages: 165
Product dimensions: 6.10(w) x 9.25(h) x 0.02(d)

Table of Contents

What is frustrated magnetism and why should you care?.- An introduction to field theory in magnetic systems: the Néel antiferromagnet.- Angle-resolved NMR: a theory of the 1/T1 relaxation rate in magnetic systems.- Theory of the NMR relaxation rate in magnetic Fe pnictides.- Field theoretical description of quantum spin-nematic order.- How to recognise the quantum spin-nematic state.
From the B&N Reads Blog

Customer Reviews