Transport Simulation in Microelectronics

Transport Simulation in Microelectronics

Paperback(Softcover reprint of the original 1st ed. 1995)

$99.00
View All Available Formats & Editions
Use Standard Shipping. For guaranteed delivery by December 24, use Express or Expedited Shipping.

Product Details

ISBN-13: 9783034898980
Publisher: Birkh�user Basel
Publication date: 09/28/2011
Series: Progress in Numerical Simulation for Microelectronics , #3
Edition description: Softcover reprint of the original 1st ed. 1995
Pages: 240
Product dimensions: 5.98(w) x 9.02(h) x 0.02(d)

Table of Contents

Content.- 1 The Boltzmann Equation.- 1.1 The Liouville Equation.- 1.2 Rarefied Gases.- 1.2.1 Equilibrium.- 1.2.2 Knudsen Number and Fluid Equations.- 1.2.3 Multiple Species.- 1.2.4 Boundary Conditions.- 1.3 Radiation Transport.- 1.3.1 The Radiation Transport Equation.- 1.3.2 Boundary Conditions.- 1.4 Electron Transport.- 1.4.1 Classical Vlasov-Poisson.- 1.4.2 Semi-Classical Vlasov-Poisson.- 1.4.3 Semi-Classical Boltzmann Equation.- 1.4.4 Equilibrium.- 1.4.5 Hydrodynamic Equations.- 1.4.6 Electrons and Holes.- 1.4.7 Boundary Conditions.- 1.5 Summary.- 2 Modeling of Gas Flow.- 2.1 Typical Reactors.- 2.2 Hydrodynamic Equations.- 2.2.1 Balance Equations.- 2.2.2 Generalized Forces.- 2.3 Near Hydrodynamic Flows.- 2.3.1 Estimates of Transport Coefficients.- 2.3.2 Slip Boundary Conditions.- 2.4 Transition Regime Flows.- 2.4.1 Scattering Angle Models.- 2.4.2 Boundary Conditions.- 2.5 Free Molecular Flow.- 3 Numerical Methods for Rarefied Gas Dynamics.- 3.1 Direct Simulation Monte Carlo.- 3.1.1 Spatial Discretization.- 3.1.2 Time Step.- 3.1.3 Collision Step.- 3.1.4 Convection Step.- 3.1.5 Boundaries.- 3.2 Computing Results.- 3.3 Extensions.- 3.3.1 Multiple Species.- 3.3.2 Axisymmetric Flow.- 3.3.3 Gas Phase Chemical Reactions.- 3.4 Simplified Flows.- 3.4.1 Test Particle Method.- 3.4.2 Free Molecular Flow.- 4 Gas Transport Simulations.- 4.1 Near Hydrodynamic Effects.- 4.1.1 Determination of Slip Coefficients.- 4.1.2 The Diffusion Coefficient.- 4.2 UHV-CVD Reactor.- 4.3 Sputtering Reactors.- 4.3.1 The Reactor Model.- 4.3.2 Velocity Distributions.- 4.3.3 Collimated Sputtering.- 5 Modeling of Radiative Heat Transfer.- 5.1 Rapid Thermal Processing.- 5.2 Semi-transparent Materials.- 5.2.1 The McMahon Approximation.- 5.2.2 Example: Single Coating Layer.- 5.3 Optical Properties of Surfaces.- 5.4 Solution of the Integral Equation.- 5.4.1 The Series Solution.- 5.4.2 Specular Reflection.- 5.4.3 Diffuse Reflection.- 5.5 The Rendering Equation.- 6 Monte Carlo for Radiation Transport.- 6.1 Monte Carlo Solution Procedure.- 6.2 Quasi-Monte Carlo Methods.- 6.2.1 Discrepancy.- 6.2.2 Quasi-Random Sequences.- 6.2.3 Integration and Discrepancy.- 6.3 Coupling Radiation and Gas Transport.- 7 Radiation Transport Simulations.- 7.1 Case Study of an RTP Reactor.- 7.1.1 A Simplified Radiative Heat Transfer Reactor.- 7.1.2 Numerical Experiment.- 7.1.3 Numerical Results.- 7.1.4 Conclusions.- 7.2 Scalar Control RTCVD-reactor.- 7.3 Multi-variable Control RTCVD-reactor.- 8 Modeling of Charge Transport.- 8.1 Numerical Methods for Linear Transport.- 8.1.1 Event Based Monte Carlo.- 8.1.2 History Based Monte Carlo.- 8.2 Further Comparisons.- 8.2.1 Distribution Functions.- 8.2.2 Mass and Charge Currents.- A Monte Carlo Methods.- References.

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews