Pub. Date:
Springer London
Vector Calculus / Edition 1

Vector Calculus / Edition 1

by Paul C. Matthews


View All Available Formats & Editions
Current price is , Original price is $44.99. You
Select a Purchase Option (1st ed. 1998. Corr. 3rd printing 2000)
  • purchase options
    $9.24 $44.99 Save 79% Current price is $9.24, Original price is $44.99. You Save 79.46210268948654%.
    • Free return shipping at the end of the rental period details
    • Textbook Rentals in 3 Easy Steps  details
    Note: Access code and/or supplemental material are not guaranteed to be included with textbook rental or used textbook.
  • purchase options
    $36.77 $44.99 Save 18% Current price is $36.77, Original price is $44.99. You Save 18%.
  • purchase options
    $20.22 $44.99 Save 55% Current price is $20.22, Original price is $44.99. You Save 55%.
    Note: Access code and/or supplemental material are not guaranteed to be included with textbook rental or used textbook.
  • purchase options


Vector Calculus / Edition 1

Vector calculus is the foundation stone on which a vast amount of applied mathematics is based. Topics such as fluid dynamics, solid mechanics and electromagnetism depend heavily on the calculus of vector quantities in three dimensions. This book covers the material in a comprehensive but concise manner, combining mathematical rigour with physical insight. There are many diagrams to illustrate the physical meaning of the mathematical concepts, which is essential for a full understanding of the subject. Each chapter concludes with a summary of the most important points, and there are worked examples that cover all of the material. The final chapter introduces some of the most important applications of vector calculus, including mechanics and electromagnetism.

Product Details

ISBN-13: 9783540761808
Publisher: Springer London
Publication date: 06/12/2000
Series: Springer Undergraduate Mathematics Series
Edition description: 1st ed. 1998. Corr. 3rd printing 2000
Pages: 182
Sales rank: 684,055
Product dimensions: 7.01(w) x 9.25(h) x 0.38(d)

Table of Contents

1. Vector Algebra.- 1.1 Vectors and scalars.- 1.1.1 Definition of a vector and a scalar.- 1.1.2 Addition of vectors.- 1.1.3 Components of a vector.- 1.2 Dot product.- 1.2.1 Applications of the dot product.- 1.3 Cross product.- 1.3.1 Applications of the cross product.- 1.4 Scalar triple product.- 1.5 Vector triple product.- 1.6 Scalar fields and vector fields.- 2. Line, Surface and Volume Integrals.- 2.1 Applications and methods of integration.- 2.1.1 Examples of the use of integration.- 2.1.2 Integration by substitution.- 2.1.3 Integration by parts.- 2.2 Line integrals.- 2.2.1 Introductory example: work done against a force.- 2.2.2 Evaluation of line integrals.- 2.2.3 Conservative vector fields.- 2.2.4 Other forms of line integrals.- 2.3 Surface integrals.- 2.3.1 Introductory example: flow through a pipe.- 2.3.2 Evaluation of surface integrals.- 2.3.3 Other forms of surface integrals.- 2.4 Volume integrals.- 2.4.1 Introductory example: mass of an object with variable density.- 2.4.2 Evaluation of volume integrals.- 3. Gradient, Divergence and Curl.- 3.1 Partial differentiation and Taylor series.- 3.1.1 Partial differentiation.- 3.1.2 Taylor series in more than one variable.- 3.2 Gradient of a scalar field.- 3.2.1 Gradients, conservative fields and potentials.- 3.2.2 Physical applications of the gradient.- 3.3 Divergence of a vector field.- 3.3.1 Physical interpretation of divergence.- 3.3.2 Laplacian of a scalar field.- 3.4 Curl of a vector field.- 3.4.1 Physical interpretation of curl.- 3.4.2 Relation between curl and rotation.- 3.4.3 Curl and conservative vector fields.- 4. Suffix Notation and its Applications.- 4.1 Introduction to suffix notation.- 4.2 The Kronecker delta—ij.- 4.3 The alternating tensor—ijk.- 4.4 Relation between—ijk and—ij.- 4.5 Grad, div and curl in suffix notation.- 4.6 Combinations of grad, div and curl.- 4.7 Grad, div and curl applied to products of functions.- 5. Integral Theorems.- 5.1 Divergence theorem.- 5.1.1 Conservation of mass for a fluid.- 5.1.2 Applications of the divergence theorem.- 5.1.3 Related theorems linking surface and volume integrals.- 5.2 Stokes’s theorem.- 5.2.1 Applications of Stokes’s theorem.- 5.2.2 Related theorems linking line and surface integrals.- 6. Curvilinear Coordinates.- 6.1 Orthogonal curvilinear coordinates.- 6.2 Grad, div and curl in orthogonal curvilinear coordinate systems.- 6.2.1 Gradient.- 6.2.2 Divergence.- 6.2.3 Curl.- 6.3 Cylindrical polar coordinates.- 6.4 Spherical polar coordinates.- 7. Cartesian Tensors.- 7.1 Coordinate transformations.- 7.2 Vectors and scalars.- 7.3 Tensors.- 7.3.1 The quotient rule.- 7.3.2 Symmetric and anti-symmetric tensors.- 7.3.3 Isotropic tensors.- 7.4 Physical examples of tensors.- 7.4.1 Ohm’s law.- 7.4.2 The inertia tensor.- 8. Applications of Vector Calculus.- 8.1 Heat transfer.- 8.2 Electromagnetism.- 8.2.1 Electrostatics.- 8.2.2 Electromagnetic waves in a vacuum.- 8.3 Continuum mechanics and the stress tensor.- 8.4 Solid mechanics.- 8.5 Fluid mechanics.- 8.5.1 Equation of motion for a fluid.- 8.5.2 The vorticity equation.- 8.5.3 Bernoulli’s equation.- Solutions.

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews