Uh-oh, it looks like your Internet Explorer is out of date.

For a better shopping experience, please upgrade now.

Wireless Communications: Principles and Practice

Wireless Communications: Principles and Practice

5.0 1
by Theodore S. Rappaport

Offering a wealth of practical information on the implementation realities of wireless communications, this book also contains up-to-date information on the major wireless communication standards from around the world.

KEY TOPICS: Covers every fundamental aspect of wireless communications, from cellular system design to networking, plus the


Offering a wealth of practical information on the implementation realities of wireless communications, this book also contains up-to-date information on the major wireless communication standards from around the world.

KEY TOPICS: Covers every fundamental aspect of wireless communications, from cellular system design to networking, plus the world-wide standards, including ETACS, GSM, and PDC.

MARKET: For cellular radio engineers and technicians.

Editorial Reviews

Fatbrain Review

Technical introduction to the fastest growing engineering field, cellular radio and wireless personal communication. Combines many disciplines to present principles of design fundamentals, mobile radio propagation, modulation techniques, channel and speech coding, multiple access techniques and networking. Describes and compares existing and proposed world-wide cellular cordless and personal communication systems. Compiles the major wireless standards. Some familiarity with probability, communication theory and electromagnetics is assumed.
A comprehensive text on wireless technology, for students or practicing engineers who are already familiar with technical concepts such as probability, communication theory, and basic electromagnetics. It covers the design fundamentals of cellular systems, including issues of frequency reuse, channel assignments, radio propagation, and both analog and digital modulation techniques. Speech coding, channel coding, diversity, spread spectrum, and multiple access are also discussed. A separate chapter is devoted to wireless networking, including SS7 and ISDN. Annotation c. Book News, Inc., Portland, OR (booknews.com)

Product Details

Publication date:
Wireless Communications Series

Read an Excerpt

Chapter 3: The Cellular Concept—System Design Fundamentals

The design objective of early mobile radio systems was to achieve a large coverage area by using a single, high powered transmitter with an antenna mounted on a tall tower. While this approach achieved very good coverage, it also meant that it was impossible to reuse those same frequencies throughout the system, since any attempts to achieve frequency reuse would result in interference. For example, the Bell mobile system in New York City in the 1970s could only support a maximum of twelve simultaneous calls over a thousand square miles [Cal88]. Faced with the fact that government regulatory agencies could not make spectrum allocations in proportion to the increasing demand for mobile services, it became imperative to restructure the radio telephone system to achieve high capacity with limited radio spectrum while at the same time covering very large areas.

3.1 Introduction

The cellular concept was a major breakthrough in solving the problem of spectral congestion and user capacity. It offered very high capacity in a limited spectrum allocation without any major technological changes. The cellular concept is a system-level idea which calls for replacing a single, high power transmitter (large cell) with many low power transmitters (small cells), each providing coverage to only a small portion of the service area. Each base station is allocated a portion of the total number of channels available to the entire system, and nearby base stations are assigned different groups of channels so that all the available channels are assigned to a relatively small number of neighboring base stations. Neighboring base stations are assigned different groups of channels so that the interference between base stations (and the mobile users under their control) is minimized. By systematically spacing base stations and their channel groups throughout a market, the available channels are distributed throughout the geographic region and may be reused as many times as necessary so long as the interference between cochannel stations is kept below acceptable levels.

As the demand for service increases (i.e., as more channels are needed within a particular market), the number of base stations may be increased (along with a corresponding decrease in transmitter power to avoid added interference), thereby providing additional radio capacity with no additional increase in radio spectrum. This fundamental principle is the foundation for all modern wireless communication systems, since it enables a fixed number of channels to serve an arbitrarily large number of subscribers by reusing the channels throughout the coverage region. Furthermore, the cellular concept allows every piece of subscriber equipment within a country or continent to be manufactured with the same set of channels so that any mobile may be used anywhere within the region.

3.2 Frequency Reuse

Cellular radio systems rely on an intelligent allocation and reuse of channels throughout a coverage region [Oet83]. Each cellular base station is allocated a group of radio channels to be used within a small geographic area called a cell. Base stations in adjacent cells are assigned channel groups which contain completely different channels than neighboring cells. The base station antennas are designed to achieve the desired coverage within the particular cell. By limiting the coverage area to within the boundaries of a cell, the same group of channels may be used to cover different cells that are separated from one another by distances large enough to keep interference levels within tolerable limits. The design process of selecting and allocating channel groups for all of the cellular base stations within a system is called frequency reuse or frequency planning [Mac79].

Figure 3.1 illustrates the concept of cellular frequency reuse, where cells labeled with the same letter use the same group of channels. The frequency reuse plan is overlaid upon a map to indicate where different frequency channels are used. The hexagonal cell shape shown in Figure 3.1 is conceptual and is a simplistic model of the radio coverage for each base station, but it has been universally adopted since the hexagon permits easy and manageable analysis of a cellular system. The actual radio coverage of a cell is known as the footprint and is determined from field measurements or propagation prediction models. Although the real footprint is amorphous in nature, a regular cell shape is needed for systematic system design and adaptation for future growth. While it might seem natural to choose a circle to represent the coverage area of a base station, adjacent circles cannot be overlaid upon a map without leaving gaps or creating overlapping regions. Thus, when considering geometric shapes which cover an entire region without overlap and with equal area, there are three sensible choices—a square, an equilateral triangle, and a hexagon. A cell must be designed to serve the weakest mobiles within the footprint, and these are typically located at the edge of the cell. For a given distance between the center of a polygon and its farthest perimeter points, the hexagon has the largest area of the three. Thus, by using the hexagon geometry, the fewest number of cells can cover a geographic region, and the hexagon closely approximates a circular radiation pattern which would occur for an omnidirectional base station antenna and free space propagation. Of course, the actual cellular footprint is determined by the contour in which a given transmitter serves the mobiles successfully.

When using hexagons to model coverage areas, base station transmitters are depicted as either being in the center of the cell (center-excited cells) or on three of the six cell vertices (edge-excited cells). Normally, omnidirectional antennas are used in center-excited cells and sectored directional antennas are used in corner-excited cells. Practical considerations usually do not allow base stations to be placed exactly as they appear in the hexagonal layout. Most system designs permit a base station to be positioned up to one-fourth the cell radius away from the ideal location.

To understand the frequency reuse concept, consider a cellular system which has a total of S duplex channels available for use. If each cell is allocated a group of k channels (k < S), and if the S channels are divided among N cells into unique and disjoint channel groups which each have the same number of channels, the total number of available radio channels can be expressed as


S  = kN

The N cells which collectively use the complete set of available frequencies is called a cluster. If a cluster is replicated M times within the system, the total number of duplex channels, C, can be used as a measure of capacity and is given by


C = MkN = MS

As seen from Equation (3.2), the capacity of a cellular system is directly proportional to the number of times a cluster is replicated in a fixed service area. The factor N is called the cluster size and is typically equal to 4, 7, or 12. If the cluster size N is reduced while the cell size is kept constant, more clusters are required to cover a given area, and hence more capacity (a larger value of C) is achieved. A large cluster size indicates that the ratio between the cell radius and the distance between co-channel cells is small. Conversely, a small cluster size indicates that co-channel cells are located much closer together. The value for N is a function of how much interference a mobile or base station can tolerate while maintaining a sufficient quality of communications. From a design viewpoint, the smallest possible value of N is desirable in order to maximize capacity over a given coverage area (i.e., to maximize C in Equation (3.2)). The frequency reuse factor of a cellular system is given by 1/N, since each cell within a cluster is only assigned 1/N of the total available channels in the system.

Due to the fact that the hexagonal geometry of Figure 3.1 has exactly six equidistant neighbors and that the lines joining the centers of any cell and each of its neighbors are separated by multiples of 60 degrees, there are only certain cluster sizes and cell layouts which are possible [Mac79]. In order to tessellate—to connect without gaps between adjacent cells—the geometry of hexagons is such that the number of cells per cluster, N, can only have values which satisfy Equation (3.3).


N = i2 + ij + j2

where i and j are non-negative integers. To find the nearest co-channel neighbors of a particular cell, one must do the following: (1) move i cells along any chain of hexagons and then (2) turn 60 degrees counter-clockwise and move j cells. This is illustrated in Figure 3.2 for i = 3 and j =2 (example, N = 19).

Example 3.1

If a total of 33 MHz of bandwidth is allocated to a particular FDD cellular telephone system which uses two 25 kHz simplex channels to provide full duplex voice and control channels, compute the number of channels available per cell if a system uses (a) four-cell reuse, (b) seven-cell reuse, and (c) 12-cell reuse. If 1 MHz of the allocated spectrum is dedicated to control channels, determine an equitable distribution of control channels and voice channels in each cell for each of the three systems.


Total bandwidth = 33 * MHz
Channel bandwidth = 25 kHz 2 simplex channels = 50 kHz/duplex channel
Total available channels = 33,000/50 = 660 channels
(a) For N = 4,
total number of channels available per cell = 660/4 = 165 channels.
(b) For N = 7,
total number of channels available per cell = 660/7 = 95 channels.
(c) For N = 12,
total number of channels available per cell = 660/12 = 55 channels.

A 1 MHz spectrum for control channels implies that there are 1000/50 = 20 control channels out of the 660 channels available. To evenly distribute the control and voice channels, simply allocate the same number of voice channels in each cell wherever possible. Here, the 660 channels must be evenly distributed to each cell within the cluster. In practice, only the 640 voice channels would be allocated, since the control channels are allocated separately as 1 per cell.

(a) For N = 4, we can have five control channels and 160 voice channels per cell. In practice, however, each cell only needs a single control channel (the control channels have a greater reuse distance than the voice channels). Thus, one control channel and 160 voice channels would be assigned to each cell.

(b) For N = 7, four cells with three control channels and 92 voice channels, two cells with three control channels and 90 voice channels, and one cell with two control channels and 92 voice channels could be allocated. In practice, however, each cell would have one control channel, four cells would have 91 voice channels, and three cells would have 92 voice channels.

(c) For N = 12, we can have eight cells with two control channels and 53 voice channels, and four cells with one control channel and 54 voice channels each. In an actual system, each cell would have one control channel, eight cells would have 53 voice channels, and four cells would have 54 voice channels.

3.3 Channel Assignment Strategies

For efficient utilization of the radio spectrum, a frequency reuse scheme that is consistent with the objectives of increasing capacity and minimizing interference is required. A variety of channel assignment strategies have been developed to achieve these objectives. Channel assignment strategies can be classified as either fixed or dynamic. The choice of channel assignment strategy impacts the performance of the system, particularly as to how calls are managed when a mobile user is handed off from one cell to another [Tek91], [LiC93], [Sun94], [Rap93b].

In a fixed channel assignment strategy, each cell is allocated a predetermined set of voice channels. Any call attempt within the cell can only be served by the unused channels in that particular cell. If all the channels in that cell are occupied, the call is blocked and the subscriber does not receive service. Several variations of the fixed assignment strategy exist. In one approach, called the borrowing strategy, a cell is allowed to borrow channels from a neighboring cell if all of its own channels are already occupied. The mobile switching center (MSC) supervises such borrowing procedures and ensures that the borrowing of a channel does not disrupt or interfere with any of the calls in progress in the donor cell.

In a dynamic channel assignment strategy, voice channels are not allocated to different cells permanently. Instead, each time a call request is made, the serving base station requests a channel from the MSC. The switch then allocates a channel to the requested cell following an algorithm that takes into account the likelihood of future blocking within the cell, the frequency of use of the candidate channel, the reuse distance of the channel, and other cost functions.

Accordingly, the MSC only allocates a given frequency if that frequency is not presently in use in the cell or any other cell which falls within the minimum restricted distance of frequency reuse to avoid co-channel interference. Dynamic channel assignment reduce the likelihood of blocking, which increases the trunking capacity of the system, since all the available channels in a market are accessible to all of the cells. Dynamic channel assignment strategies require the MSC to collect real-time data on channel occupancy, traffic distribution, and radio signal strength indications (RSSI) of all channels on a continuous basis. This increases the storage and computational load on the system but provides the advantage of increased channel utilization and decreased probability of a blocked call....

Meet the Author

Theodore S. Rappaport is the James S. Tucker Professor of Electrical and Computer Engineering at the Virginia Polytechnic Institute and State University and is the Series Editor for the Prentice Hall Communications Engineering and Emerging Technologies Series. In 1990 he founded the Mobile & Portable Radio Research Group at Virginia Tech, one of the first university research and educational programs focused on wireless communications. Rappaport has developed dozens of commercial products now used by major carriers and manufacturers. He has also created fundamental research and teaching materials used in industry short courses and in university classrooms around the globe. His current research focuses on new methods for analyzing and developing wireless broadband and portable Internet access in emerging frequency bands, and on the development, modeling, and practical use of 3-D site-specific propagation techniques for future wireless networks.

Customer Reviews

Average Review:

Post to your social network


Most Helpful Customer Reviews

See all customer reviews

Wireless Communications 0 out of 5 based on 0 ratings. 0 reviews.