Analysis of Injection Processes in an Innovative 3D-CFD Tool for the Simulation of Internal Combustion Engines
Due to the large number of influencing parameters and interactions, the fuel injection and therewith fuel propagation and distribution are among the most complex processes in an internal combustion engine. For this reason, injection is usually the subject to highly detailed numerical modeling, which leads to unacceptably high computing times in the 3D-CFD simulation of a full engine domain. Marlene Wentsch presents a critical analysis, optimization and extension of injection modeling in an innovative, fast response 3D-CFD tool that is exclusively dedicated to the virtual development of internal combustion engines.

About the Author

Marlene Wentsch works as research associate in the field of 3D-CFD simulations of injection processes at the Institute of Internal Combustion Engines and Automotive Engineering (IVK), University of Stuttgart, Germany.

1133671539
Analysis of Injection Processes in an Innovative 3D-CFD Tool for the Simulation of Internal Combustion Engines
Due to the large number of influencing parameters and interactions, the fuel injection and therewith fuel propagation and distribution are among the most complex processes in an internal combustion engine. For this reason, injection is usually the subject to highly detailed numerical modeling, which leads to unacceptably high computing times in the 3D-CFD simulation of a full engine domain. Marlene Wentsch presents a critical analysis, optimization and extension of injection modeling in an innovative, fast response 3D-CFD tool that is exclusively dedicated to the virtual development of internal combustion engines.

About the Author

Marlene Wentsch works as research associate in the field of 3D-CFD simulations of injection processes at the Institute of Internal Combustion Engines and Automotive Engineering (IVK), University of Stuttgart, Germany.

79.99 In Stock
Analysis of Injection Processes in an Innovative 3D-CFD Tool for the Simulation of Internal Combustion Engines

Analysis of Injection Processes in an Innovative 3D-CFD Tool for the Simulation of Internal Combustion Engines

by Marlene Wentsch
Analysis of Injection Processes in an Innovative 3D-CFD Tool for the Simulation of Internal Combustion Engines

Analysis of Injection Processes in an Innovative 3D-CFD Tool for the Simulation of Internal Combustion Engines

by Marlene Wentsch

Paperback(1st ed. 2019)

$79.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
    Not Eligible for Free Shipping
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Due to the large number of influencing parameters and interactions, the fuel injection and therewith fuel propagation and distribution are among the most complex processes in an internal combustion engine. For this reason, injection is usually the subject to highly detailed numerical modeling, which leads to unacceptably high computing times in the 3D-CFD simulation of a full engine domain. Marlene Wentsch presents a critical analysis, optimization and extension of injection modeling in an innovative, fast response 3D-CFD tool that is exclusively dedicated to the virtual development of internal combustion engines.

About the Author

Marlene Wentsch works as research associate in the field of 3D-CFD simulations of injection processes at the Institute of Internal Combustion Engines and Automotive Engineering (IVK), University of Stuttgart, Germany.


Product Details

ISBN-13: 9783658221669
Publisher: Springer Fachmedien Wiesbaden
Publication date: 05/17/2018
Series: Wissenschaftliche Reihe Fahrzeugtechnik Universit�t Stuttgart
Edition description: 1st ed. 2019
Pages: 155
Product dimensions: 5.83(w) x 8.27(h) x (d)

About the Author

Marlene Wentsch works as research associate in the field of 3D-CFD simulations of injection processes at the Institute of Internal Combustion Engines and Automotive Engineering (IVK), University of Stuttgart, Germany.

Table of Contents

The 3D-CFD Tool QuickSim.- Numerical Boundary Conditions.- Liquid Fuel Modeling.- Parametrization of Injector Properties.
From the B&N Reads Blog

Customer Reviews