Building ETL Pipelines with Python: Create and deploy enterprise-ready ETL pipelines by employing modern methods

Modern extract, transform, and load (ETL) pipelines for data engineering have favored the Python language for its broad range of uses and a large assortment of tools, applications, and open source components. With its simplicity and extensive library support, Python has emerged as the undisputed choice for data processing.
In this book, you’ll walk through the end-to-end process of ETL data pipeline development, starting with an introduction to the fundamentals of data pipelines and establishing a Python development environment to create pipelines. Once you've explored the ETL pipeline design principles and ET development process, you'll be equipped to design custom ETL pipelines. Next, you'll get to grips with the steps in the ETL process, which involves extracting valuable data; performing transformations, through cleaning, manipulation, and ensuring data integrity; and ultimately loading the processed data into storage systems. You’ll also review several ETL modules in Python, comparing their pros and cons when building data pipelines and leveraging cloud tools, such as AWS, to create scalable data pipelines. Lastly, you’ll learn about the concept of test-driven development for ETL pipelines to ensure safe deployments.
By the end of this book, you’ll have worked on several hands-on examples to create high-performance ETL pipelines to develop robust, scalable, and resilient environments using Python.

1144129286
Building ETL Pipelines with Python: Create and deploy enterprise-ready ETL pipelines by employing modern methods

Modern extract, transform, and load (ETL) pipelines for data engineering have favored the Python language for its broad range of uses and a large assortment of tools, applications, and open source components. With its simplicity and extensive library support, Python has emerged as the undisputed choice for data processing.
In this book, you’ll walk through the end-to-end process of ETL data pipeline development, starting with an introduction to the fundamentals of data pipelines and establishing a Python development environment to create pipelines. Once you've explored the ETL pipeline design principles and ET development process, you'll be equipped to design custom ETL pipelines. Next, you'll get to grips with the steps in the ETL process, which involves extracting valuable data; performing transformations, through cleaning, manipulation, and ensuring data integrity; and ultimately loading the processed data into storage systems. You’ll also review several ETL modules in Python, comparing their pros and cons when building data pipelines and leveraging cloud tools, such as AWS, to create scalable data pipelines. Lastly, you’ll learn about the concept of test-driven development for ETL pipelines to ensure safe deployments.
By the end of this book, you’ll have worked on several hands-on examples to create high-performance ETL pipelines to develop robust, scalable, and resilient environments using Python.

27.99 In Stock
Building ETL Pipelines with Python: Create and deploy enterprise-ready ETL pipelines by employing modern methods

Building ETL Pipelines with Python: Create and deploy enterprise-ready ETL pipelines by employing modern methods

Building ETL Pipelines with Python: Create and deploy enterprise-ready ETL pipelines by employing modern methods

Building ETL Pipelines with Python: Create and deploy enterprise-ready ETL pipelines by employing modern methods

eBook

$27.99 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

Modern extract, transform, and load (ETL) pipelines for data engineering have favored the Python language for its broad range of uses and a large assortment of tools, applications, and open source components. With its simplicity and extensive library support, Python has emerged as the undisputed choice for data processing.
In this book, you’ll walk through the end-to-end process of ETL data pipeline development, starting with an introduction to the fundamentals of data pipelines and establishing a Python development environment to create pipelines. Once you've explored the ETL pipeline design principles and ET development process, you'll be equipped to design custom ETL pipelines. Next, you'll get to grips with the steps in the ETL process, which involves extracting valuable data; performing transformations, through cleaning, manipulation, and ensuring data integrity; and ultimately loading the processed data into storage systems. You’ll also review several ETL modules in Python, comparing their pros and cons when building data pipelines and leveraging cloud tools, such as AWS, to create scalable data pipelines. Lastly, you’ll learn about the concept of test-driven development for ETL pipelines to ensure safe deployments.
By the end of this book, you’ll have worked on several hands-on examples to create high-performance ETL pipelines to develop robust, scalable, and resilient environments using Python.


Product Details

ISBN-13: 9781804615539
Publisher: Packt Publishing
Publication date: 09/29/2023
Sold by: Barnes & Noble
Format: eBook
Pages: 246
File size: 7 MB

About the Author

Brij Kishore Pandey stands as a testament to dedication, innovation, and mastery in the vast domains of software engineering, data engineering, machine learning, and architectural design. His illustrious career, spanning over 14 years, has seen him wear multiple hats, transitioning seamlessly between roles and consistently pushing the boundaries of technological advancement. He has a degree in electrical and electronics engineering. His work history includes the likes of JP Morgan Chase, American Express, 3M Company, Alaska Airlines, and Cigna Healthcare. He is currently working as a principal software engineer at Automatic Data Processing Inc. (ADP). Originally from India, he resides in Parsippany, New Jersey, with his wife and daughter.
Emily Ro Schoof is a dedicated data specialist with a global perspective, showcasing her expertise as a data scientist and data engineer on both national and international platforms. Drawing from a background rooted in healthcare and experimental design, she brings a unique perspective of expertise to her data analytic roles. Emily's multifaceted career ranges from working with UNICEF to design automated forecasting algorithms to identify conflict anomalies using near real-time media monitoring to serving as a subject matter expert for General Assembly's Data Engineering course content and design. Her mission is to empower individuals to leverage data for positive impact. Emily holds the strong belief that providing easy access to resources that merge theory and real-world applications is the essential first step in this process.

Table of Contents

Table of Contents
  1. A Primer on Python and the Development Environment
  2. Understanding the ETL Process and Data Pipelines
  3. Design Principles for Creating Scalable and Resilient Pipelines
  4. Sourcing Insightful Data and Data Extraction Strategies
  5. Data Cleansing and Transformation
  6. Loading Transformed Data
  7. Tutorial – Building an End-to End ETL Pipeline in Python
  8. Powerful ETL Libraries and Tools in Python
  9. A Primer on AWS tools for ETL Processes
  10. Tutorial – Creating an ETL Pipeline in AWS
  11. Building Robust Deployment Pipelines in AWS
  12. Orchestration and Scaling in ETL Pipelines
  13. Testing Strategies for ETL pipelines
  14. Best Practices for ETL Pipelines
  15. Use Cases and Further Reading
From the B&N Reads Blog

Customer Reviews