The main focus of the book is on a rigorous derivation of the multi-particle localization in a strong random external potential field. To make the presentation accessible to a wider audience, the authors restrict attention to a relatively simple tight-binding Anderson model on a cubic lattice Zd.
This book includes the following cutting-edge features:
an introduction to the state-of-the-art single-particle localization theory
an extensive discussion of relevant technical aspects of the localization theory
a thorough comparison of the multi-particle model with its single-particle counterpart
a self-contained rigorous derivation of both spectral and dynamical localization in the multi-particle tight-binding Anderson model.
Required mathematical background for the book includes a knowledge of functional calculus, spectral theory (essentially reduced to the case of finite matrices) and basic probability theory. This is an excellent text for a year-long graduate course or seminar in mathematical physics. It also can serve as a standard reference for specialists.
The main focus of the book is on a rigorous derivation of the multi-particle localization in a strong random external potential field. To make the presentation accessible to a wider audience, the authors restrict attention to a relatively simple tight-binding Anderson model on a cubic lattice Zd.
This book includes the following cutting-edge features:
an introduction to the state-of-the-art single-particle localization theory
an extensive discussion of relevant technical aspects of the localization theory
a thorough comparison of the multi-particle model with its single-particle counterpart
a self-contained rigorous derivation of both spectral and dynamical localization in the multi-particle tight-binding Anderson model.
Required mathematical background for the book includes a knowledge of functional calculus, spectral theory (essentially reduced to the case of finite matrices) and basic probability theory. This is an excellent text for a year-long graduate course or seminar in mathematical physics. It also can serve as a standard reference for specialists.

Multi-scale Analysis for Random Quantum Systems with Interaction
238
Multi-scale Analysis for Random Quantum Systems with Interaction
238Paperback(Softcover reprint of the original 1st ed. 2014)
Product Details
ISBN-13: | 9781493939527 |
---|---|
Publisher: | Springer New York |
Publication date: | 08/23/2016 |
Series: | Progress in Mathematical Physics , #65 |
Edition description: | Softcover reprint of the original 1st ed. 2014 |
Pages: | 238 |
Product dimensions: | 6.10(w) x 9.25(h) x 0.02(d) |