In 1842 the Belgian mathematician Eugène Charles Catalan asked whether 8 and 9 are the only consecutive pure powers of non-zero integers. 160 years after, the question was answered affirmatively by the Swiss mathematician of Romanian origin Preda Mihăilescu. In other words, 32 – 23 = 1 is the only solution of the equation xp – yq = 1 in integers x, y, p, q with xy ≠ 0 and p, q ≥ 2.
In this book we give a complete and (almost) self-contained exposition of Mihăilescu’s work, which must be understandable by a curious university student, not necessarily specializing in Number Theory. We assume a very modest background:a standard university course of algebra, including basic Galois theory, and working knowledge of basic algebraic number theory.
In 1842 the Belgian mathematician Eugène Charles Catalan asked whether 8 and 9 are the only consecutive pure powers of non-zero integers. 160 years after, the question was answered affirmatively by the Swiss mathematician of Romanian origin Preda Mihăilescu. In other words, 32 – 23 = 1 is the only solution of the equation xp – yq = 1 in integers x, y, p, q with xy ≠ 0 and p, q ≥ 2.
In this book we give a complete and (almost) self-contained exposition of Mihăilescu’s work, which must be understandable by a curious university student, not necessarily specializing in Number Theory. We assume a very modest background:a standard university course of algebra, including basic Galois theory, and working knowledge of basic algebraic number theory.

The Problem of Catalan
245
The Problem of Catalan
245Related collections and offers
Product Details
ISBN-13: | 9783319100944 |
---|---|
Publisher: | Springer-Verlag New York, LLC |
Publication date: | 10/09/2014 |
Sold by: | Barnes & Noble |
Format: | eBook |
Pages: | 245 |
File size: | 6 MB |