The Problem of Catalan
In 1842 the Belgian mathematician Eugène Charles Catalan asked whether 8 and 9 are the only consecutive pure powers of non-zero integers. 160 years after, the question was answered affirmatively by the Swiss mathematician of Romanian origin Preda Mihăilescu. In other words, 32 – 23 = 1 is the only solution of the equation xpyq = 1 in integers x, y, p, q with xy ≠ 0 and p, q ≥ 2.

In this book we give a complete and (almost) self-contained exposition of Mihăilescu’s work, which must be understandable by a curious university student, not necessarily specializing in Number Theory. We assume a very modest background:a standard university course of algebra, including basic Galois theory, and working knowledge of basic algebraic number theory.

1119993796
The Problem of Catalan
In 1842 the Belgian mathematician Eugène Charles Catalan asked whether 8 and 9 are the only consecutive pure powers of non-zero integers. 160 years after, the question was answered affirmatively by the Swiss mathematician of Romanian origin Preda Mihăilescu. In other words, 32 – 23 = 1 is the only solution of the equation xpyq = 1 in integers x, y, p, q with xy ≠ 0 and p, q ≥ 2.

In this book we give a complete and (almost) self-contained exposition of Mihăilescu’s work, which must be understandable by a curious university student, not necessarily specializing in Number Theory. We assume a very modest background:a standard university course of algebra, including basic Galois theory, and working knowledge of basic algebraic number theory.

54.99 In Stock
The Problem of Catalan

The Problem of Catalan

The Problem of Catalan

The Problem of Catalan

Paperback(Softcover reprint of the original 1st ed. 2014)

$54.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
    Not Eligible for Free Shipping
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

In 1842 the Belgian mathematician Eugène Charles Catalan asked whether 8 and 9 are the only consecutive pure powers of non-zero integers. 160 years after, the question was answered affirmatively by the Swiss mathematician of Romanian origin Preda Mihăilescu. In other words, 32 – 23 = 1 is the only solution of the equation xpyq = 1 in integers x, y, p, q with xy ≠ 0 and p, q ≥ 2.

In this book we give a complete and (almost) self-contained exposition of Mihăilescu’s work, which must be understandable by a curious university student, not necessarily specializing in Number Theory. We assume a very modest background:a standard university course of algebra, including basic Galois theory, and working knowledge of basic algebraic number theory.


Product Details

ISBN-13: 9783319362557
Publisher: Springer International Publishing
Publication date: 10/24/2015
Edition description: Softcover reprint of the original 1st ed. 2014
Pages: 245
Product dimensions: 6.10(w) x 9.25(h) x 0.02(d)

Table of Contents

An Historical Account.- Even Exponents.- Cassels' Relations.- Cyclotomic Fields.- Dirichlet L-Series and Class Number Formulas.- Higher Divisibility Theorems.- Gauss Sums and Stickelberger's Theorem.- Mihăilescu’s Ideal.- The Real Part of Mihăilescu’s Ideal.- Cyclotomic units.- Selmer Group and Proof of Catalan's Conjecture.- The Theorem of Thaine.- Baker's Method and Tijdeman's Argument.- Appendix A: Number Fields.- Appendix B: Heights.- Appendix C: Commutative Rings, Modules, Semi-Simplicity.- Appendix D: Group Rings and Characters.- Appendix E: Reduction and Torsion of Finite G-Modules.- Appendix F: Radical Extensions.
From the B&N Reads Blog

Customer Reviews