An Introduction to Linear Algebra
The straight-forward clarity of the writing is admirable. -- American Mathematical Monthly.
This work provides an elementary and easily readable account of linear algebra, in which the exposition is sufficiently simple to make it equally useful to readers whose principal interests lie in the fields of physics or technology. The account is self-contained, and the reader is not assumed to have any previous knowledge of linear algebra. Although its accessibility makes it suitable for non-mathematicians, Professor Mirsky's book is nevertheless a systematic and rigorous development of the subject.
Part I deals with determinants, vector spaces, matrices, linear equations, and the representation of linear operators by matrices. Part II begins with the introduction of the characteristic equation and goes on to discuss unitary matrices, linear groups, functions of matrices, and diagonal and triangular canonical forms. Part II is concerned with quadratic forms and related concepts. Applications to geometry are stressed throughout; and such topics as rotation, reduction of quadrics to principal axes, and classification of quadrics are treated in some detail. An account of most of the elementary inequalities arising in the theory of matrices is also included. Among the most valuable features of the book are the numerous examples and problems at the end of each chapter, carefully selected to clarify points made in the text.

1021240612
An Introduction to Linear Algebra
The straight-forward clarity of the writing is admirable. -- American Mathematical Monthly.
This work provides an elementary and easily readable account of linear algebra, in which the exposition is sufficiently simple to make it equally useful to readers whose principal interests lie in the fields of physics or technology. The account is self-contained, and the reader is not assumed to have any previous knowledge of linear algebra. Although its accessibility makes it suitable for non-mathematicians, Professor Mirsky's book is nevertheless a systematic and rigorous development of the subject.
Part I deals with determinants, vector spaces, matrices, linear equations, and the representation of linear operators by matrices. Part II begins with the introduction of the characteristic equation and goes on to discuss unitary matrices, linear groups, functions of matrices, and diagonal and triangular canonical forms. Part II is concerned with quadratic forms and related concepts. Applications to geometry are stressed throughout; and such topics as rotation, reduction of quadrics to principal axes, and classification of quadrics are treated in some detail. An account of most of the elementary inequalities arising in the theory of matrices is also included. Among the most valuable features of the book are the numerous examples and problems at the end of each chapter, carefully selected to clarify points made in the text.

22.95 In Stock
An Introduction to Linear Algebra

An Introduction to Linear Algebra

by L. Mirsky
An Introduction to Linear Algebra

An Introduction to Linear Algebra

by L. Mirsky

Paperback

$22.95 
  • SHIP THIS ITEM
    Qualifies for Free Shipping
  • PICK UP IN STORE
    Check Availability at Nearby Stores

Related collections and offers


Overview

The straight-forward clarity of the writing is admirable. -- American Mathematical Monthly.
This work provides an elementary and easily readable account of linear algebra, in which the exposition is sufficiently simple to make it equally useful to readers whose principal interests lie in the fields of physics or technology. The account is self-contained, and the reader is not assumed to have any previous knowledge of linear algebra. Although its accessibility makes it suitable for non-mathematicians, Professor Mirsky's book is nevertheless a systematic and rigorous development of the subject.
Part I deals with determinants, vector spaces, matrices, linear equations, and the representation of linear operators by matrices. Part II begins with the introduction of the characteristic equation and goes on to discuss unitary matrices, linear groups, functions of matrices, and diagonal and triangular canonical forms. Part II is concerned with quadratic forms and related concepts. Applications to geometry are stressed throughout; and such topics as rotation, reduction of quadrics to principal axes, and classification of quadrics are treated in some detail. An account of most of the elementary inequalities arising in the theory of matrices is also included. Among the most valuable features of the book are the numerous examples and problems at the end of each chapter, carefully selected to clarify points made in the text.


Product Details

ISBN-13: 9780486664347
Publisher: Dover Publications
Publication date: 11/30/2011
Series: Dover Books on Mathematics Series
Pages: 462
Product dimensions: 5.37(w) x 8.50(h) x (d)

Table of Contents

PART I
"DETERMINANTS, VECTORS, MATRICES, AND LINEAR EQUATIONS"
I. DETERMINANTS
1.1. Arrangements and the Î-symbol
1.2. Elementary properties of determinants
1.3. Multiplication of determinants
1.4. Expansion theorems
1.5. Jacobi's theorem
1.6. Two special theorems on linear equations
II. VECTOR SPACES AND LINEAR MANIFOLDS
2.1. The algebra of vectors
2.2. Linear manifolds
2.3. Linear dependence and bases
2.4. Vector representation of linear manifolds
2.5. Inner products and orthonormal bases
III. THE ALGEBRA OF MATRICES
3.1. Elementary algebra
3.2. Preliminary notions concerning matrices
3.3. Addition and multiplication of matrices
3.4. Application of matrix technique to linear substitutions
3.5. Adjugate matrices
3.6. Inverse matrices
3.7. Rational functions of a square matrix
3.8. Partitioned matrices
IV. LINEAR OPERATIONS
4.1. Change of basis in a linear manifold
4.2. Linear operators and their representations
4.3. Isomorphisms and automorphisms of linear manifolds
4.4. Further instances of linear operators
V. SYSTEMS OF LINEAR EQUATIONS AND RANK OF MATRICES
5.1. Preliminary results
5.2. The rank theorem
5.3. The general theory of linear equations
5.4. Systems of homogeneous linear equations
5.5. Miscellaneous applications
5.6. Further theorems on rank of matrices
VI. ELEMENTARY OPERATIONS AND THE CONCEPT OF EQUIVALENCE
6.1. E-operations and E-matrices
6.2. Equivalent matrices
6.3. Applications of the preceding theory
6.4. Congruence transformations
6.5. The general concept of equivalence
6.6. Axiomatic characterization of determinants
PART II
FURTHER DEVELOPMENT OF MATRIX THEORY
VII. THE CHARACTERISTIC EQUATION
7.1. The coefficients of the characteristic polynomial
7.2. Characteristic polynomials and similarity transformations
7.3. Characteristic roots of rational functions of matrices
7.4. The minimum polynomial and the theorem of Cayley and Hamilton
7.5. Estimates of characteristic roots
7.6. Characteristic vectors
VIII. ORTHOGONAL AND UNITARY MATRICES
8.1. Orthogonal matrices
8.2. Unitary matrices
8.3. Rotations in the plane
8.4. Rotations in space
IX. GROUPS
9.1. The axioms of group theory
9.2. Matrix groups and operator groups
9.3. Representation of groups by matrices
9.4. Groups of singular matrices
9.5. Invariant spaces and groups of linear transformations
X. CANONICAL FORMS
10.1. The idea of a canonical form
10.2. Diagonal canonical forms under the similarity group
10.3. Diagonal canonical forms under the orthogonal similarity group and the unitary similarity group
10.4. Triangular canonical forms
10.5. An intermediate canonical form
10.6. Simultaneous similarity transformations
XI. MATRIX ANALYSIS
11.1 Convergent matrix sequences
11.2 Power series and matrix functions
11.3 The relation between matrix functions and matrix polynomials
11.4 Systems of linear differential equations
PART III
QUADRIATIC FORMS
XII. "BILINEAR, QUADRATIC, AND HERMITIAN FORMS"
12.1 Operators and forms of the bilinear and quadratic types
12.2 Orthogonal reduction to diagonal form
12.3 General reduction to diagonal form
12.4 The problem of equivalence. Rank and signature
12.5 Classification of quadrics
12.6 Hermitian forms
XIII. DEFINITE AND INDEFINITE FORMS
13.1 The value classes
13.2 Transformations of positive definite forms
13.3 Determinantal criteria
13.4 Simultaneous reduction of two quadratic forms
13.5 "The inequalities of Hadamard, Minkowski, Fischer, and Oppenheim"
MISCELLANEOUS PROBLEMS
BIBLIOGRAPHY
INDEX
From the B&N Reads Blog

Customer Reviews