

Hardcover
-
SHIP THIS ITEMIn stock. Ships in 6-10 days.PICK UP IN STORE
Your local store may have stock of this item.
Available within 2 business hours
Related collections and offers
Overview
Product Details
ISBN-13: | 9783110304367 |
---|---|
Publisher: | De Gruyter |
Publication date: | 09/10/2018 |
Pages: | 443 |
Product dimensions: | 6.69(w) x 9.45(h) x (d) |
Age Range: | 18 Years |
About the Author
Table of Contents
Preface vii
1 Ultrafast ultrahigh-intensity laser pulses Zhiyi Wei Shaobo Fang 1
1.1 Generation of ultrashort laser pulses 2
1.1.1 Kerr-lens mode-locked Ti:sapphire lasers 3
1.1.2 Diode-pumped all-solid-state ultrafast lasers 6
1.1.3 Ultrafast fiber lasers 10
1.2 Amplification of ultrashort pulses 12
1.2.1 Chirped pulse amplification technique 12
1.2.2 All-solid-state ultrafast and ultraintense lasers 18
1.2.3 Ultrashort and high-intensity fiber lasers 23
1.2.4 Optical parametric chirped pulse amplification technology 27
1.3 Carrier envelope phase of ultrashort pulses and related control 31
1.3.1 Ultrashort pulse compression 31
1.3.2 The measurement and controlling of the carrier envelope phase 35
1.3.3 Coherent synthesis in the laser optical field 41
1.4 The main categories of ultrafast lasers 49
1.4.1 High repetition rate ultrafast lasers 50
1.4.2 High average power ultrafast lasers 53
1.4.3 High peak power ultrafast laser pulses 54
1.5 Noise suppression of ultrahigh-intensity lasers 57
1.5.1 Spatial filtering and temporal filtering 58
1.5.2 Suppression of nanosecond prepulses 59
1.5.3 Improve pulse contrast through saturable absorbers 60
1.5.4 Contrast and energy improvement of injected seeds 61
1.5.5 Amplifier technology in ring cavity 62
1.5.6 Cross-polarized wave technology 62
1.5.7 Dual-chirped pulse amplification (DCPA) 64
1.5.8 Ultrashort pulse pumped optical parametric amplifier technique 65
1.5.9 Plasma mirror technology 66
1.6 Prospects for ultrahigh-intensity laser development 67
2 Femtosecond optical frequency combs Heping Zeng 81
2.1 Introduction 81
2.2 Basis of optical frequency combs 83
2.3 Measurements of carrier-envelope phase 85
2.3.1 Self-referenced f-2f interferometer 85
2.3.2 Beat note detection between a CW laser and a laser comb 88
2.4 Impacts on the carrier-envelope phase 89
2.4.1 Dependence of CE phase on pump power 90
2.4.2 Polarization dependence of CE phase 91
2.4.3 Impact of intracavity dispersion 93
2.5 Optical frequency combs and phase noise suppression 94
2.5.1 CE phase stabilization based on feedback loops 95
2.5.2 Direct feed-forward scheme for frequency combs 101
2.5.3 Self-stabilized frequency combs 105
2.6 Applications of optical frequency combs 106
3 Three-dimensional integration of hybrid functionalities in transparent dielectrics by femtosecond laser direct writing Fei He Yang Liao Jintian Lin Jielei Nt Bin Zeng LingLing Qiao Ya Cheng 111
3.1 Introduction 111
3.2 Fundamentals of femtosecond laser processing 114
3.2.1 Introduction to femtosecond lasers 114
3.2.2 Principles of femtosecond laser processing 116
3.2.3 Characterization of femtosecond laser processing 119
3.2.4 Femtosecond laser direct writing systems 123
3.2.5 Overview of beam/pulse shaping methods 126
3.3 Spatiotemporal focusing of femtosecond pulses for materials processing 129
3.3.1 Introduction 129
3.3.2 Principles of spatiotemporal focusing methods 131
3.3.3 3D isotropic fabrication resolution using spatiotemporal focusing 134
3.3.4 Spatial and temporal characterization of spatiotemporally focused spots 136
3.3.5 Novel nonlinear effects induced by spatiotemporal focusing 150
3.3.6 Conclusions 158
3.4 Femtosecond laser fabrication of microfluidics 160
3.4.1 Introduction 160
3.4.2 Microfluidics fabrication in fused silica 164
3.4.3 Microfluidics fabrication in porous glass 165
3.4.4 Nanofabrication in porous glass 178
3.4.5 Conclusions 184
3.5 Femtosecond laser fabrication of micro-optical components 185
3.5.1 Introduction 185
3.5.2 Fabrication of micro-optical components in glass 186
3.5.3 Fabrication of optical micro-resonators in various dielectrics 192
3.5.4 Conclusions 201
3.6 Femtosecond laser fabrication of metallic structures 202
3.6.1 Introduction 202
3.6.2 Selective metallization on glass surfaces and its mechanism 203
3.6.3 Fabrication of embedded microelectrodes 208
3.6.4 Fabrication of SERS structures 211
3.6.5 Conclusions 213
3.7 Integration of hybrid functionalities by femtosecond laser direct writing 214
3.7.1 Introduction 214
3.7.2 Optofluidics fabricated by femtosecond laser direct writing 215
3.7.3 Electro-optical integration in LiNbO3 by femtosecond lasers 218
3.7.4 On-chip SERS devices fabricated by femtosecond lasers 222
3.7.5 Sensing applications of optical microresonators 224
3.7.6 Conclusions 231
3.8 Summary and outlook 231
4 Spatial and temporal broadening of a femtosecond laser pulse after angular dispersion Derong Li Xiaohua Lv Qingming Luo Shaoqun Zeng 249
4.1 Introduction 249
4.2 Angular dispersion 251
4.2.1 Definition 251
4.2.2 Angular dispersion in Gaussian beams 252
4.3 Temporal broadening of femtosecond laser pulses after dispersion 254
4.3.1 Pulse broadening after angular dispersion: theoretical analysis 255
4.3.2 Pulse broadening after angular dispersion: experiments and results 264
4.3.3 Physical mechanism of pulse broadening after angular dispersion: comparison of the plane wave, spherical wave and Gaussian beam 268
4.4 Beam spot broadening after angular dispersion 270
4.5 Applications of angular dispersion and future directions 274
5 Atomic physics in ultrafast intense laser fields Wei Quan Xuanyang Lai Xiaojun Liu Jing Chen 279
5.1 Introduction 279
5.2 Basic concepts in strong field atomic physics 279
5.2.1 Multiphoton ionization (MPI) 280
5.2.2 Above threshold ionization (ATI) and high harmonic generation (HHG) 281
5.2.3 Tunneling ionization and over the barrier ionization 282
5.2.4 Electron rescattering scenario 285
5.3 Relevant experimental techniques 286
5.3.1 Ultrafast laser technique 286
5.3.2 Photoelectron and photoion spectrometer 290
5.4 Theoretical approaches 295
5.4.1 Numerical solution of time dependent Schrödinger equation 297
5.4.2 Fully classical trajectory method 300
5.4.3 Semiclassical approach 302
5.4.4 Quantum mechanical S-matrix method 306
5.5 Key experimental facts 311
5.5.1 Above threshold ionization 312
5.5.2 Nonsequential double ionization 317
5.6 Comparison between experiment and theory 321
5.6.1 Low energy peaks in ATI spectra 321
5.6.2 High energy plateau in ATI spectra 323
5.6.3 Resonance-like enhancement in ATI spectra 326
5.6.4 Low energy structure in ATI spectra 328
5.6.5 Doubly charged ion yields from NSDI 333
5.6.6 Ion momentum distribution from NSDI 335
5.6.7 Correlated electron momentum distribution from NSDI 336
5.7 Current research frontiers 337
5.7.1 Absolute phase effect of the few cycle laser pulse 338
5.7.2 Atomic ionization by superintense laser field 342
5.7.3 Molecular ionization in intense laser fields 343
5.7.4 Strong field atomic physics in XUV and X-ray regimes 347
5.8 Summary and outlook 350
6 Ultrafast spectroscopic techniques and ultrafast photo physics in polymers Shufeng Wang Kang Meng Qihuang Gong 361
6.1 Introduction to ultrafast spectroscopy 361
6.1.1 Development of femtosecond ultrafast lasers 361
6.1.2 Ultrafast spectroscopic techniques 362
6.2 Ultrafast photophysics in polymers 369
6.2.1 Introduction on optoelectronic materials and their physics 369
6.2.2 Fundamental photophysics in polymers 374
6.2.3 Examples of polymer systems 385
6.3 Photophysics of polymer complexes 402
6.3.1 Background and development of organic photovoltaic devices 402
6.3.2 Applications of ultrafast spectroscopy in polymer complexes 411
Index 431