As artificial intelligence systems become increasingly integrated into critical sectors such as healthcare, finance, transportation, and national security, understanding and mitigating adversarial risks has never been more crucial. Each chapter delivers not only a detailed analysis of current challenges, but it also includes insights into practical mitigation techniques, future trends, and real-world applications.
This book is intended for researchers and graduate students working in machine learning, cybersecurity, and related disciplines. Security professionals will also find this book to be a valuable reference for understanding the latest advancements, defending against sophisticated adversarial threats, and contributing to the development of more robust, trustworthy AI systems. By bridging theoretical foundations with practical applications, this book serves as both a scholarly reference and a catalyst for innovation in the rapidly evolving field of AI security.
As artificial intelligence systems become increasingly integrated into critical sectors such as healthcare, finance, transportation, and national security, understanding and mitigating adversarial risks has never been more crucial. Each chapter delivers not only a detailed analysis of current challenges, but it also includes insights into practical mitigation techniques, future trends, and real-world applications.
This book is intended for researchers and graduate students working in machine learning, cybersecurity, and related disciplines. Security professionals will also find this book to be a valuable reference for understanding the latest advancements, defending against sophisticated adversarial threats, and contributing to the development of more robust, trustworthy AI systems. By bridging theoretical foundations with practical applications, this book serves as both a scholarly reference and a catalyst for innovation in the rapidly evolving field of AI security.
Adversarial Example Detection and Mitigation Using Machine Learning
304
Adversarial Example Detection and Mitigation Using Machine Learning
304Hardcover
Product Details
| ISBN-13: | 9783031994463 |
|---|---|
| Publisher: | Springer Nature Switzerland |
| Publication date: | 12/25/2025 |
| Pages: | 304 |
| Product dimensions: | 6.10(w) x 9.25(h) x (d) |