Algebraic Theory of Numbers: Translated from the French by Allan J. Silberger
Algebraic number theory introduces students not only to new algebraic notions but also to related concepts: groups, rings, fields, ideals, quotient rings and quotient fields, homomorphisms and isomorphisms, modules, and vector spaces. Author Pierre Samuel notes that students benefit from their studies of algebraic number theory by encountering many concepts fundamental to other branches of mathematics — algebraic geometry, in particular.
This book assumes a knowledge of basic algebra but supplements its teachings with brief, clear explanations of integrality, algebraic extensions of fields, Galois theory, Noetherian rings and modules, and rings of fractions. It covers the basics, starting with the divisibility theory in principal ideal domains and ending with the unit theorem, finiteness of the class number, and the more elementary theorems of Hilbert ramification theory. Numerous examples, applications, and exercises appear throughout the text.
1126358272
Algebraic Theory of Numbers: Translated from the French by Allan J. Silberger
Algebraic number theory introduces students not only to new algebraic notions but also to related concepts: groups, rings, fields, ideals, quotient rings and quotient fields, homomorphisms and isomorphisms, modules, and vector spaces. Author Pierre Samuel notes that students benefit from their studies of algebraic number theory by encountering many concepts fundamental to other branches of mathematics — algebraic geometry, in particular.
This book assumes a knowledge of basic algebra but supplements its teachings with brief, clear explanations of integrality, algebraic extensions of fields, Galois theory, Noetherian rings and modules, and rings of fractions. It covers the basics, starting with the divisibility theory in principal ideal domains and ending with the unit theorem, finiteness of the class number, and the more elementary theorems of Hilbert ramification theory. Numerous examples, applications, and exercises appear throughout the text.
11.95 In Stock
Algebraic Theory of Numbers: Translated from the French by Allan J. Silberger

Algebraic Theory of Numbers: Translated from the French by Allan J. Silberger

by Pierre Samuel
Algebraic Theory of Numbers: Translated from the French by Allan J. Silberger

Algebraic Theory of Numbers: Translated from the French by Allan J. Silberger

by Pierre Samuel

Paperback

$11.95 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Algebraic number theory introduces students not only to new algebraic notions but also to related concepts: groups, rings, fields, ideals, quotient rings and quotient fields, homomorphisms and isomorphisms, modules, and vector spaces. Author Pierre Samuel notes that students benefit from their studies of algebraic number theory by encountering many concepts fundamental to other branches of mathematics — algebraic geometry, in particular.
This book assumes a knowledge of basic algebra but supplements its teachings with brief, clear explanations of integrality, algebraic extensions of fields, Galois theory, Noetherian rings and modules, and rings of fractions. It covers the basics, starting with the divisibility theory in principal ideal domains and ending with the unit theorem, finiteness of the class number, and the more elementary theorems of Hilbert ramification theory. Numerous examples, applications, and exercises appear throughout the text.

Product Details

ISBN-13: 9780486466668
Publisher: Dover Publications
Publication date: 05/19/2008
Series: Dover Books on Mathematics
Pages: 112
Product dimensions: 5.90(w) x 9.00(h) x 0.30(d)

Table of Contents

Translator's Introduction
Introduction
Notations, Definitions, and Prerequisites
1. Principal ideal rings
2. Elements integral over a ring; elements algebraic over a field
Appendix: The field of complex numbers is algebraically closed
3. Noetherian rings and Dedekind rings
4. Ideal classes and the unit theorem
Appendix: The calculation of a volume
5. The splitting of prime ideals in an extension field
6. Galois extensions of number fields
A supplement, without proofs
Exercises
Bibliography
Index

From the B&N Reads Blog

Customer Reviews