Algorithms and Complexity / Edition 2

Algorithms and Complexity / Edition 2

by Herbert S. Wilf
ISBN-10:
1568811780
ISBN-13:
9781568811789
Pub. Date:
12/09/2002
Publisher:
Taylor & Francis
ISBN-10:
1568811780
ISBN-13:
9781568811789
Pub. Date:
12/09/2002
Publisher:
Taylor & Francis
Algorithms and Complexity / Edition 2

Algorithms and Complexity / Edition 2

by Herbert S. Wilf

Hardcover

$105.0
Current price is , Original price is $105.0. You
$105.00 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

  • SHIP THIS ITEM

    Temporarily Out of Stock Online

    Please check back later for updated availability.


Overview

This book is an introductory textbook on the design and analysis of algorithms. The author uses a careful selection of a few topics to illustrate the tools for algorithm analysis. Recursive algorithms are illustrated by Quicksort, FFT, fast matrix multiplications, and others. Algorithms associated with the network flow problem are fundamental in many areas of graph connectivity, matching theory, etc. Algorithms in number theory are discussed with some applications to public key encryption. This second edition will differ from the present edition mainly in that solutions to most of the exercises will be included.

Product Details

ISBN-13: 9781568811789
Publisher: Taylor & Francis
Publication date: 12/09/2002
Edition description: 2ND
Pages: 232
Product dimensions: 6.00(w) x 9.00(h) x (d)

Table of Contents

Preface, Preface to the Second Edition, 0 What this Book Is About, 0.1 Background, 0.2 Hard versus Easy Problems, 0.3 A Preview, 1 Mathematical Preliminaries, 1.1 Orders of Magnitude, 1.2 Positional Number Systems, 1.3 Manipulations with Series, 1.4 Recurrence Relations, 1.5 Counting, 1.6 Graphs, 2 Recursive Algorithms, 2.1 Introduction, 2.2 Quicksort, 2.3 Recursive Graph Algorithms, 2.4 Fast Matrix Multiplication, 2.5 The Discrete Fourier Transform, 2.6 Applications of the FFT, 2.7 A Review, 2.8 Bibliography, 3 The Network Flow Problem, 3.1 Introduction, 3.2 Algorithms for the Network Flow Problem, 3.3 The Algorithm of Ford and Fulkerson, 3.4 The Max-Flow Min-Cut Theorem, 3.5 The Complexity of the Ford-Fulkerson Algorithm, 3.6 Layered Networks, 3.7 The MPM Algorithm, 3.8 Applications of Network Flow, Bibliography, 4 Algorithms in the Theory of Numbers, 4.1 Preliminaries, 4.2 The Greatest Common Divisor, 4.3 The Extended Euclidean Algorithm, 4.4 Primality Testing, 4.5 Interlude: The Ring of Integers Modulo, 4.6 Pseudoprimality Tests, 4.7 Proof of Goodness of the Strong Pseudoprimality Test, 4.8 Factoring and Cryptography, 4.9 Factoring Large Integers, 4.10 Proving Primality, Bibliography, 5 NP-Completeness, 5.1 Introduction, 5.2 Turing Machines, 5.3 Cook’s Theorem, 5.4 Some Other NP-Complete Problems, 5.5 Half a Loaf, 5.6 Backtracking (I): Independent Sets, 5.7 Backtracking (II): Graph Coloring, 5.8 Approximate Algorithms for Hard Problems, Bibliography, Hints and Solutions for Selected Problems, Index

What People are Saying About This

From the Publisher

"[The examples] are selected with great care and enable the reader to concentrate directly on the main features of the demonstrated topics. . . . The book can be warmly recommended to those willing to learn (or teach) basic ideas of computational mathematics." -EMS Newsletter, March 2004

From the B&N Reads Blog

Customer Reviews