Algorithms Illuminated: Omnibus Edition
In Algorithms Illuminated, Tim Roughgarden teaches the basics of algorithms in the most accessible way imaginable. This Omnibus Edition contains the complete text of Parts 1-4, with thorough coverage of asymptotic analysis, graph search and shortest paths, data structures, divide-and-conquer algorithms, greedy algorithms, dynamic programming, and NP-hard problems. Hundreds of worked examples, quizzes, and exercises, plus comprehensive online videos, help readers become better programmers; sharpen their analytical skills; learn to think algorithmically; acquire literacy with computer science's greatest hits; and ace their technical interviews.
1141961248
Algorithms Illuminated: Omnibus Edition
In Algorithms Illuminated, Tim Roughgarden teaches the basics of algorithms in the most accessible way imaginable. This Omnibus Edition contains the complete text of Parts 1-4, with thorough coverage of asymptotic analysis, graph search and shortest paths, data structures, divide-and-conquer algorithms, greedy algorithms, dynamic programming, and NP-hard problems. Hundreds of worked examples, quizzes, and exercises, plus comprehensive online videos, help readers become better programmers; sharpen their analytical skills; learn to think algorithmically; acquire literacy with computer science's greatest hits; and ace their technical interviews.
59.97 In Stock
Algorithms Illuminated: Omnibus Edition

Algorithms Illuminated: Omnibus Edition

by Tim Roughgarden
Algorithms Illuminated: Omnibus Edition

Algorithms Illuminated: Omnibus Edition

by Tim Roughgarden

Hardcover

$59.97 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

In Algorithms Illuminated, Tim Roughgarden teaches the basics of algorithms in the most accessible way imaginable. This Omnibus Edition contains the complete text of Parts 1-4, with thorough coverage of asymptotic analysis, graph search and shortest paths, data structures, divide-and-conquer algorithms, greedy algorithms, dynamic programming, and NP-hard problems. Hundreds of worked examples, quizzes, and exercises, plus comprehensive online videos, help readers become better programmers; sharpen their analytical skills; learn to think algorithmically; acquire literacy with computer science's greatest hits; and ace their technical interviews.

Product Details

ISBN-13: 9780999282984
Publisher: Soundlikeyourself Publishing
Publication date: 09/15/2022
Pages: 690
Product dimensions: 7.20(w) x 10.31(h) x 1.89(d)

About the Author

Tim Roughgarden is a Professor of Computer Science at Columbia University. His research, teaching, and expository writings have been recognized by a Presidential Early Career Award for Scientists and Engineers, the ACM Grace Murray Hopper Award, the EATCS-SIGACT Gödel Prize, a Guggenheim Fellowship, the INFORMS Lancaster Prize, and a Tau Beta Pi Teaching Award. His other books include Twenty Lectures on Algorithmic Game Theory (2016) and Beyond the Worst-Case Analysis of Algorithms (2021).

Table of Contents

Part I. The Basics: 1. Introduction; 2. Asymptotic notation; 3. Divide-and-Conquer algorithms; 4. The master method; 5. QuickSort; 6. Linear-time selection; Part II. Graph Algorithms and Data Structures: 7. Graphs: the Basics; 8. Graph search and its applications; 9. Dijkstra's shortest-path algorithm; 10. The heap data structure; 11. Search trees; 12. Hash tables and Bloom filters; Part III. Greedy Algorithms and Dynamic Programming; 13. Introduction to greedy algorithms; 14. Huffman codes; 15. Minimum spanning trees; 16. Introduction to dynamic programming; 17. Advanced dynamic programming; 18. Shortest paths revisited; Part IV. Algorithms for NP-Hard Problems; 19. What is NP-Hardness?; 20. Compromising on correctness: efficient inexact algorithms; 21. Compromising on speed: exact inefficient algorithms; 22. Proving problems NP-hard; 23. P, NP, and all that; 24. Case study: the FCC incentive auction; Appendix A. Quick review of proofs By induction; Appendix B. Quick review of discrete probability; Epilogue. A field guide to algorithm design; Hints and solutions.
From the B&N Reads Blog

Customer Reviews