An Algebraic Introduction to Complex Projective Geometry: Commutative Algebra
In this introduction to commutative algebra, the author choses a route that leads the reader through the essential ideas, without getting embroiled in technicalities. He takes the reader quickly to the fundamentals of complex projective geometry, requiring only a basic knowledge of linear and multilinear algebra and some elementary group theory. The author divides the book into three parts. In the first, he develops the general theory of noetherian rings and modules. He includes a certain amount of homological algebra, and he emphasizes rings and modules of fractions as preparation for working with sheaves. In the second part, he discusses polynomial rings in several variables with coefficients in the field of complex numbers. After Noether's normalization lemma and Hilbert's Nullstellensatz, the author introduces affine complex schemes and their morphisms; he then proves Zariski's main theorem and Chevalley's semi-continuity theorem. Finally, the author's detailed study of Weil and Cartier divisors provides a solid background for modern intersection theory. This is an excellent textbook for those who seek an efficient and rapid introduction to the geometric applications of commutative algebra.
1100947728
An Algebraic Introduction to Complex Projective Geometry: Commutative Algebra
In this introduction to commutative algebra, the author choses a route that leads the reader through the essential ideas, without getting embroiled in technicalities. He takes the reader quickly to the fundamentals of complex projective geometry, requiring only a basic knowledge of linear and multilinear algebra and some elementary group theory. The author divides the book into three parts. In the first, he develops the general theory of noetherian rings and modules. He includes a certain amount of homological algebra, and he emphasizes rings and modules of fractions as preparation for working with sheaves. In the second part, he discusses polynomial rings in several variables with coefficients in the field of complex numbers. After Noether's normalization lemma and Hilbert's Nullstellensatz, the author introduces affine complex schemes and their morphisms; he then proves Zariski's main theorem and Chevalley's semi-continuity theorem. Finally, the author's detailed study of Weil and Cartier divisors provides a solid background for modern intersection theory. This is an excellent textbook for those who seek an efficient and rapid introduction to the geometric applications of commutative algebra.
75.0 In Stock
An Algebraic Introduction to Complex Projective Geometry: Commutative Algebra

An Algebraic Introduction to Complex Projective Geometry: Commutative Algebra

by Christian Peskine
An Algebraic Introduction to Complex Projective Geometry: Commutative Algebra

An Algebraic Introduction to Complex Projective Geometry: Commutative Algebra

by Christian Peskine

Paperback(New Edition)

$75.00 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

In this introduction to commutative algebra, the author choses a route that leads the reader through the essential ideas, without getting embroiled in technicalities. He takes the reader quickly to the fundamentals of complex projective geometry, requiring only a basic knowledge of linear and multilinear algebra and some elementary group theory. The author divides the book into three parts. In the first, he develops the general theory of noetherian rings and modules. He includes a certain amount of homological algebra, and he emphasizes rings and modules of fractions as preparation for working with sheaves. In the second part, he discusses polynomial rings in several variables with coefficients in the field of complex numbers. After Noether's normalization lemma and Hilbert's Nullstellensatz, the author introduces affine complex schemes and their morphisms; he then proves Zariski's main theorem and Chevalley's semi-continuity theorem. Finally, the author's detailed study of Weil and Cartier divisors provides a solid background for modern intersection theory. This is an excellent textbook for those who seek an efficient and rapid introduction to the geometric applications of commutative algebra.

Product Details

ISBN-13: 9780521108478
Publisher: Cambridge University Press
Publication date: 04/09/2009
Series: Cambridge Studies in Advanced Mathematics , #47
Edition description: New Edition
Pages: 244
Product dimensions: 6.00(w) x 8.90(h) x 0.80(d)

Table of Contents

1. Rings, homomorphisms, ideals; 2. Modules; 3. Noetherian rings and modules; 4. Artinian rings and modules; 5. Finitely generated modules over Noetherian rings; 6. A first contact with homological algebra; 7. Fractions; 8. Integral extensions of rings; 9. Algebraic extensions of rings; 10. Noether's normalisation lemma; 11. Affine schemes; 12. Morphisms of affine schemes; 13. Zariski's main theorem; 14. Integrally closed Noetherian rings; 15. Weil divisors; 16. Cartier divisors; Subject index; Symbols index.
From the B&N Reads Blog

Customer Reviews