An Introduction to Machine Learning

An Introduction to Machine Learning

by Miroslav Kubat
ISBN-10:
3319348868
ISBN-13:
9783319348865
Pub. Date:
07/31/2016
Publisher:
Springer International Publishing
ISBN-10:
3319348868
ISBN-13:
9783319348865
Pub. Date:
07/31/2016
Publisher:
Springer International Publishing
An Introduction to Machine Learning

An Introduction to Machine Learning

by Miroslav Kubat

Paperback

$54.99
Current price is , Original price is $54.99. You
$54.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days. Not Eligible for Free Shipping
  • PICK UP IN STORE

    Your local store may have stock of this item.


Overview

This book presents basic ideas of machine learning in a way that is easy to understand, by providing hands-on practical advice, using simple examples, and motivating students with discussions of interesting applications. The main topics include Bayesian classifiers, nearest-neighbor classifiers, linear and polynomial classifiers, decision trees, neural networks, and support vector machines. Later chapters show how to combine these simple tools by way of “boosting,” how to exploit them in more complicated domains, and how to deal with diverse advanced practical issues. One chapter is dedicated to the popular genetic algorithms.


Product Details

ISBN-13: 9783319348865
Publisher: Springer International Publishing
Publication date: 07/31/2016
Edition description: Softcover reprint of the original 1st ed. 2015
Pages: 291
Product dimensions: 6.10(w) x 9.25(h) x 0.03(d)

About the Author

Miroslav Kubat, Associate Professor at the University of Miami, has been teaching and studying machine learning for more than a quarter century. Over the years, he has published more than 100 peer-reviewed papers, co-edited two books, served on the program committees of some 60 program conferences and workshops, and is the member of the editorial boards of three scientific journals. He is widely credited for having co-pioneered research in two major branches of the discipline: induction of time-varying concepts and learning from imbalanced training sets. Apart from that, he contributed to induction from multi-label examples, induction of hierarchically organized classes, genetic algorithms, initialization of neural networks, and other problems.

Table of Contents

1. Ambitions and Goals of Machine Learning.- 2. Probabilities: Bayesian Classifiers.- 3. Similarities: Nearest-Neighbor Classifiers.- 4. Inter-Class Boundaries: Linear and Polynomial Classifiers.- 5. Decision Trees.- 6. Artificial Neural Networks.- 7. Computational Learning Theory.- 8. Experience from Historical Applications.- 9. Voting Assemblies and Boosting.- 10. Classifiers in the Form of Rule-Sets.- 11. Practical Issues to Know About.- 12. Performance Evaluation.- 13. Statistical Significance.- 14. Induction in Multi-Label Domains.- 15. Unsupervised Learning.- 16. Deep Learning.- 17. Reinforcement Learning: N-Armed Bandits and Episodes.- 18. Reinforcement Learning: From TD(0) to Deep-Q-Learning.- 19. Temporal Learning.- 20. Hidden Markov Models.- 21. Genetic Algorithm.- Bibliography.- Index.
From the B&N Reads Blog

Customer Reviews