An Introduction to Mathematical Relativity
This concise textbook introduces the reader to advanced mathematical aspects of general relativity, covering topics like Penrose diagrams, causality theory, singularity theorems, the Cauchy problem for the Einstein equations, the positive mass theorem, and the laws of black hole thermodynamics. It emerged from lecture notes originally conceived for a one-semester course in Mathematical Relativity which has been taught at the Instituto Superior Técnico (University of Lisbon, Portugal) since 2010 to Masters and Doctorate students in Mathematics and Physics.

Mostly self-contained, and mathematically rigorous, this book can be appealing to graduate students in Mathematics or Physics seeking specialization in general relativity, geometry or partial differential equations. Prerequisites include proficiency in differential geometry and the basic principles of relativity. Readers who are familiar with special relativity and have taken a course either inRiemannian geometry (for students of Mathematics) or in general relativity (for those in Physics) can benefit from this book.

1139720689
An Introduction to Mathematical Relativity
This concise textbook introduces the reader to advanced mathematical aspects of general relativity, covering topics like Penrose diagrams, causality theory, singularity theorems, the Cauchy problem for the Einstein equations, the positive mass theorem, and the laws of black hole thermodynamics. It emerged from lecture notes originally conceived for a one-semester course in Mathematical Relativity which has been taught at the Instituto Superior Técnico (University of Lisbon, Portugal) since 2010 to Masters and Doctorate students in Mathematics and Physics.

Mostly self-contained, and mathematically rigorous, this book can be appealing to graduate students in Mathematics or Physics seeking specialization in general relativity, geometry or partial differential equations. Prerequisites include proficiency in differential geometry and the basic principles of relativity. Readers who are familiar with special relativity and have taken a course either inRiemannian geometry (for students of Mathematics) or in general relativity (for those in Physics) can benefit from this book.

54.99 In Stock
An Introduction to Mathematical Relativity

An Introduction to Mathematical Relativity

by Josï Natïrio
An Introduction to Mathematical Relativity

An Introduction to Mathematical Relativity

by Josï Natïrio

Paperback(1st ed. 2021)

$54.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

This concise textbook introduces the reader to advanced mathematical aspects of general relativity, covering topics like Penrose diagrams, causality theory, singularity theorems, the Cauchy problem for the Einstein equations, the positive mass theorem, and the laws of black hole thermodynamics. It emerged from lecture notes originally conceived for a one-semester course in Mathematical Relativity which has been taught at the Instituto Superior Técnico (University of Lisbon, Portugal) since 2010 to Masters and Doctorate students in Mathematics and Physics.

Mostly self-contained, and mathematically rigorous, this book can be appealing to graduate students in Mathematics or Physics seeking specialization in general relativity, geometry or partial differential equations. Prerequisites include proficiency in differential geometry and the basic principles of relativity. Readers who are familiar with special relativity and have taken a course either inRiemannian geometry (for students of Mathematics) or in general relativity (for those in Physics) can benefit from this book.


Product Details

ISBN-13: 9783030656850
Publisher: Springer International Publishing
Publication date: 03/25/2021
Series: Latin American Mathematics Series
Edition description: 1st ed. 2021
Pages: 186
Product dimensions: 6.10(w) x 9.25(h) x (d)

About the Author

José Natário holds a DPhil in Mathematical Sciences (2000) from the University of Oxford, England. He has been an Associate Professor of Mathematics at Instituto Superior Técnico (University of Lisbon, Portugal) since 2010, where he teaches a course in Mathematical Relativity to Master and Doctorate students in Mathematics and Physics. He authored "General Relativity Without Calculus" (2011, ISBN 978-3-642-21451-6) and co-authored "An Introduction to Riemannian Geometry" (2014, ISBN 978-3-319-08665-1), both published by Springer.

Table of Contents

- Preface.- Preliminaries.- Exact Solutions.- Causality.- Singularity Theorems.- Cauchy Problems.- Mass in general relativity.- Black Holes.- Appendix: Mathematical Concepts for Physicists.- Bibliography.- Index.
From the B&N Reads Blog

Customer Reviews