Angular and Deep Learning Pocket Primer
As part of the best-selling Pocket Primer series, this book is designed to introduce the reader to basic deep learning concepts and incorporate that knowledge into Angular 10 applications. It is intended to be a fast-paced introduction to some basic features of deep learning and an overview of several popular deep learning classifiers. The book includes code samples and numerous figures and covers topics such as Angular 10 functionality, basic deep learning concepts, classification algorithms, TensorFlow, and Keras. Companion files with code and color figures are included.

FEATURES:
  • Introduces basic deep learning concepts and Angular 10 applications
  • Covers MLPs (MultiLayer Perceptrons) and CNNs (Convolutional Neural Networks), RNNs (Recurrent Neural Networks), LSTMs (Long Short-Term Memory), GRUs (Gated Recurrent Units), autoencoders, and GANs (Generative Adversarial Networks)
  • Introduces TensorFlow 2 and Keras
  • Includes companion files with source code and 4-color figures.
The companion files are also available online by emailing the publisher with proof of purchase at info@merclearning.com.
1135193897
Angular and Deep Learning Pocket Primer
As part of the best-selling Pocket Primer series, this book is designed to introduce the reader to basic deep learning concepts and incorporate that knowledge into Angular 10 applications. It is intended to be a fast-paced introduction to some basic features of deep learning and an overview of several popular deep learning classifiers. The book includes code samples and numerous figures and covers topics such as Angular 10 functionality, basic deep learning concepts, classification algorithms, TensorFlow, and Keras. Companion files with code and color figures are included.

FEATURES:
  • Introduces basic deep learning concepts and Angular 10 applications
  • Covers MLPs (MultiLayer Perceptrons) and CNNs (Convolutional Neural Networks), RNNs (Recurrent Neural Networks), LSTMs (Long Short-Term Memory), GRUs (Gated Recurrent Units), autoencoders, and GANs (Generative Adversarial Networks)
  • Introduces TensorFlow 2 and Keras
  • Includes companion files with source code and 4-color figures.
The companion files are also available online by emailing the publisher with proof of purchase at info@merclearning.com.
39.95 In Stock
Angular and Deep Learning Pocket Primer

Angular and Deep Learning Pocket Primer

by Oswald Campesato
Angular and Deep Learning Pocket Primer

Angular and Deep Learning Pocket Primer

by Oswald Campesato

Paperback

$39.95 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

As part of the best-selling Pocket Primer series, this book is designed to introduce the reader to basic deep learning concepts and incorporate that knowledge into Angular 10 applications. It is intended to be a fast-paced introduction to some basic features of deep learning and an overview of several popular deep learning classifiers. The book includes code samples and numerous figures and covers topics such as Angular 10 functionality, basic deep learning concepts, classification algorithms, TensorFlow, and Keras. Companion files with code and color figures are included.

FEATURES:
  • Introduces basic deep learning concepts and Angular 10 applications
  • Covers MLPs (MultiLayer Perceptrons) and CNNs (Convolutional Neural Networks), RNNs (Recurrent Neural Networks), LSTMs (Long Short-Term Memory), GRUs (Gated Recurrent Units), autoencoders, and GANs (Generative Adversarial Networks)
  • Introduces TensorFlow 2 and Keras
  • Includes companion files with source code and 4-color figures.
The companion files are also available online by emailing the publisher with proof of purchase at info@merclearning.com.

Product Details

ISBN-13: 9781683924739
Publisher: Mercury Learning and Information
Publication date: 11/16/2020
Series: Pocket Primer
Pages: 342
Product dimensions: 6.00(w) x 9.00(h) x (d)

About the Author

Oswald Campesato specializes in Deep Learning, Python, Data Science, and generative AI. He is the author/co-author of over forty-five books including Google Gemini for Python, Large Language Models, and GPT-4 for Developers (all Mercury Learning).

Table of Contents

1: Quick Introduction to Angular
2: UI Controls, User Input, and Pipes
3: Forms and Services
4: Deep Learning Introduction
5: Deep Learning: RNNs and LSTMs
6: Angular and TensorFlow.js
Appendices:
A. Introduction to Keras
B. Introduction to TensorFlow 2
C. TensorFlow 2 Datasets
Index
From the B&N Reads Blog

Customer Reviews