Applications of Lie Groups to Differential Equations
Symmetry methods have long been recognized to be of great importance for the study of the differential equations. This book provides a solid introduction to those applications of Lie groups to differential equations which have proved to be useful in practice. The computational methods are presented so that graduate students and researchers can readily learn to use them. Following an exposition of the applications, the book develops the underlying theory. Many of the topics are presented in a novel way, with an emphasis on explicit examples and computations. Further examples, as well as new theoretical developments, appear in the exercises at the end of each chapter.
1120373535
Applications of Lie Groups to Differential Equations
Symmetry methods have long been recognized to be of great importance for the study of the differential equations. This book provides a solid introduction to those applications of Lie groups to differential equations which have proved to be useful in practice. The computational methods are presented so that graduate students and researchers can readily learn to use them. Following an exposition of the applications, the book develops the underlying theory. Many of the topics are presented in a novel way, with an emphasis on explicit examples and computations. Further examples, as well as new theoretical developments, appear in the exercises at the end of each chapter.
64.95 In Stock
Applications of Lie Groups to Differential Equations

Applications of Lie Groups to Differential Equations

by Peter J. Olver
Applications of Lie Groups to Differential Equations

Applications of Lie Groups to Differential Equations

by Peter J. Olver

Paperback(Second Edition 1993)

$64.95 
  • SHIP THIS ITEM
    In stock. Ships in 2-4 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Symmetry methods have long been recognized to be of great importance for the study of the differential equations. This book provides a solid introduction to those applications of Lie groups to differential equations which have proved to be useful in practice. The computational methods are presented so that graduate students and researchers can readily learn to use them. Following an exposition of the applications, the book develops the underlying theory. Many of the topics are presented in a novel way, with an emphasis on explicit examples and computations. Further examples, as well as new theoretical developments, appear in the exercises at the end of each chapter.

Product Details

ISBN-13: 9780387950006
Publisher: Springer New York
Publication date: 01/21/2000
Series: Graduate Texts in Mathematics , #107
Edition description: Second Edition 1993
Pages: 513
Product dimensions: 6.10(w) x 9.25(h) x 0.36(d)

Table of Contents

1 Introduction to Lie Groups.- 1.1. Manifolds.- 1.2. Lie Groups.- 1.3. Vector Fields.- 1.4. Lie Algebras.- 1.5. Differential Forms.- Notes.- Exercises.- 2 Symmetry Groups of Differential Equations.- 2.1. Symmetries of Algebraic Equations.- 2.2. Groups and Differential Equations.- 2.3. Prolongation.- 2.4. Calculation of Symmetry Groups.- 2.5. Integration of Ordinary Differential Equations.- 2.6. Nondegeneracy Conditions for Differential Equations.- Notes.- Exercises.- 3 Group-Invariant Solutions.- 3.1. Construction of Group-Invariant Solutions.- 3.2. Examples of Group-Invariant Solutions.- 3.3. Classification of Group-Invariant Solutions.- 3.4. Quotient Manifolds.- 3.5. Group-Invariant Prolongations and Reduction.- Notes.- Exercises.- 4 Symmetry Groups and Conservation Laws.- 4.1. The Calculus of Variations.- 4.2. Variational Symmetries.- 4.3. Conservation Laws.- 4.4. Noether’s Theorem.- Notes.- Exercises.- 5 Generalized Symmetries.- 5.1. Generalized Symmetries of Differential Equations.- 5.2. Récursion Operators, Master Symmetries and Formal Symmetries.- 5.3. Generalized Symmetries and Conservation Laws.- 5.4. The Variational Complex.- Notes.- Exercises.- 6 Finite-Dimensional Hamiltonian Systems.- 6.1. Poisson Brackets.- 6.2. Symplectic Structures and Foliations.- 6.3. Symmetries, First Integrals and Reduction of Order.- Notes.- Exercises.- 7 Hamiltonian Methods for Evolution Equations.- 7.1. Poisson Brackets.- 7.2. Symmetries and Conservation Laws.- 7.3. Bi-Hamiltonian Systems.- Notes.- Exercises.- References.- Symbol Index.- Author Index.
From the B&N Reads Blog

Customer Reviews