The Arithmetic of Elliptic Curves
The theory of elliptic curves is distinguished by its long history and by the diversity of the methods that have been used in its study. This book treats the arithmetic theory of elliptic curves in its modern formulation, through the use of basic algebraic number theory and algebraic geometry. The book begins with a brief discussion of the necessary algebro-geometric results, and proceeds with an exposition of the geometry of elliptic curves, the formal group of an elliptic curve, and elliptic curves over finite fields, the complex numbers, local fields, and global fields. Included are proofs of the Mordell–Weil theorem giving finite generation of the group of rational points and Siegel's theorem on finiteness of integral points.

For this second edition of The Arithmetic of Elliptic Curves, there is a new chapter entitled Algorithmic Aspects of Elliptic Curves, with an emphasis on algorithms over finite fields which have cryptographic applications. These include Lenstra's factorization algorithm, Schoof's point counting algorithm, Miller's algorithm to compute the Tate and Weil pairings, and a description of aspects of elliptic curve cryptography. There is also a new section on Szpiro's conjecture and ABC, as well as expanded and updated accounts of recent developments and numerous new exercises.

The book contains three appendices: Elliptic Curves in Characteristics 2 and 3, Group Cohomology, and a third appendix giving an overview of more advanced topics.

1100291134
The Arithmetic of Elliptic Curves
The theory of elliptic curves is distinguished by its long history and by the diversity of the methods that have been used in its study. This book treats the arithmetic theory of elliptic curves in its modern formulation, through the use of basic algebraic number theory and algebraic geometry. The book begins with a brief discussion of the necessary algebro-geometric results, and proceeds with an exposition of the geometry of elliptic curves, the formal group of an elliptic curve, and elliptic curves over finite fields, the complex numbers, local fields, and global fields. Included are proofs of the Mordell–Weil theorem giving finite generation of the group of rational points and Siegel's theorem on finiteness of integral points.

For this second edition of The Arithmetic of Elliptic Curves, there is a new chapter entitled Algorithmic Aspects of Elliptic Curves, with an emphasis on algorithms over finite fields which have cryptographic applications. These include Lenstra's factorization algorithm, Schoof's point counting algorithm, Miller's algorithm to compute the Tate and Weil pairings, and a description of aspects of elliptic curve cryptography. There is also a new section on Szpiro's conjecture and ABC, as well as expanded and updated accounts of recent developments and numerous new exercises.

The book contains three appendices: Elliptic Curves in Characteristics 2 and 3, Group Cohomology, and a third appendix giving an overview of more advanced topics.

59.95 Out Of Stock
The Arithmetic of Elliptic Curves

The Arithmetic of Elliptic Curves

by Joseph H. Silverman
The Arithmetic of Elliptic Curves

The Arithmetic of Elliptic Curves

by Joseph H. Silverman

Paperback(Softcover reprint of hardcover 2nd ed. 2009)

$59.95 
  • SHIP THIS ITEM
    Temporarily Out of Stock Online
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

The theory of elliptic curves is distinguished by its long history and by the diversity of the methods that have been used in its study. This book treats the arithmetic theory of elliptic curves in its modern formulation, through the use of basic algebraic number theory and algebraic geometry. The book begins with a brief discussion of the necessary algebro-geometric results, and proceeds with an exposition of the geometry of elliptic curves, the formal group of an elliptic curve, and elliptic curves over finite fields, the complex numbers, local fields, and global fields. Included are proofs of the Mordell–Weil theorem giving finite generation of the group of rational points and Siegel's theorem on finiteness of integral points.

For this second edition of The Arithmetic of Elliptic Curves, there is a new chapter entitled Algorithmic Aspects of Elliptic Curves, with an emphasis on algorithms over finite fields which have cryptographic applications. These include Lenstra's factorization algorithm, Schoof's point counting algorithm, Miller's algorithm to compute the Tate and Weil pairings, and a description of aspects of elliptic curve cryptography. There is also a new section on Szpiro's conjecture and ABC, as well as expanded and updated accounts of recent developments and numerous new exercises.

The book contains three appendices: Elliptic Curves in Characteristics 2 and 3, Group Cohomology, and a third appendix giving an overview of more advanced topics.


Product Details

ISBN-13: 9781441918581
Publisher: Springer New York
Publication date: 11/19/2010
Series: Graduate Texts in Mathematics , #106
Edition description: Softcover reprint of hardcover 2nd ed. 2009
Pages: 513
Product dimensions: 6.10(w) x 9.25(h) x 0.36(d)

About the Author

Dr. Joseph Silverman is a professor at Brown University and has been an instructor or professors since 1982. He was the Chair of the Brown Mathematics department from 2001-2004. He has received numerous fellowships, grants and awards, as well as being a frequently invited lecturer. He is currently a member of the Council of the American Mathematical Society. His research areas of interest are number theory, arithmetic geometry, elliptic curves, dynamical systems and cryptography. He has co-authored over 120 publications and has had over 20 doctoral students under his tutelage. He has published 9 highly successful books with Springer, including the recently released, An Introduction to Mathematical Cryptography, for Undergraduate Texts in Mathematics.

Table of Contents

Algebraic Varieties.- Algebraic Curves.- The Geometry of Elliptic Curves.- The Formal Group of an Elliptic Curve.- Elliptic Curves over Finite Fields.- Elliptic Curves over C.- Elliptic Curves over Local Fields.- Elliptic Curves over Global Fields.- Integral Points on Elliptic Curves.- Computing the Mordell#x2013;Weil Group.- Algorithmic Aspects of Elliptic Curves.
From the B&N Reads Blog

Customer Reviews