Atmosphere of Hope: Searching for Solutions to the Climate Crisis

Atmosphere of Hope: Searching for Solutions to the Climate Crisis

by Tim Flannery

Paperback(Reprint)

$16.00
View All Available Formats & Editions
Choose Expedited Shipping at checkout for guaranteed delivery by Wednesday, January 29
MARKETPLACE
25 New & Used Starting at $1.99

Overview

Leading scientist and climate writer Tim Flannery's #1 international bestseller, The Weather Makers , was one of the first books to break the topic of climate change out into the general conversation. In the ten years since, the facts of our changing climate have become widely accepted, but political leadership has not kept up. With Earth's climate system fast approaching a crisis, Flannery argues that we need to act now.

Atmospheric CO2 levels are increasing faster than at any other time in the entire recorded history of Earth. A glacier the size of Florida is sinking into the waters of Antarctica. And around the world, people are already living with the consequences of an altered climate, from demobilizing winters to deadly heatwaves.

The response to the climate crisis has been divided. Technological optimists envision geoengineering our way out of trouble with schemes like injecting light-reflecting sulfur into the stratosphere, while pessimists believe that at this point, nothing can be done—humans will have to adapt. Flannery draws on the latest science to describe a third way forward, using strategies that enhance the Earth's own systems for carbon capture and storage—from large-scale seaweed farming to the production of carbon-negative cement. If we begin investing now, third-way technologies could capture one-quarter of current global emissions by 2050. In the meantime, governments must work together to break the link between prosperity and pollution and to continue to increase the reach of alternative energies. Written with urgency but also optimism, Atmosphere of Hope is a must-read for anyone interested in our global future.

Product Details

ISBN-13: 9780802125651
Publisher: Grove/Atlantic, Inc.
Publication date: 10/11/2016
Edition description: Reprint
Pages: 272
Sales rank: 1,223,717
Product dimensions: 5.50(w) x 8.40(h) x 0.80(d)

About the Author

Tim Flannery is a scientist, explorer, and conservationist. He has published more than 130 scientific papers and several books, including the #1 international bestseller The Weather Makers , Throwim Way Leg , Here on Earth , and Among the Islands. He was named Australian of the Year in 2007, and from 2001 to 2013 he was Australia's Climate Commissioner.

Read an Excerpt

CHAPTER 1

The Weather Makers: Right or Wrong?

Whether we and our politicians know it or not, Nature is party to all our deals and decisions, and she has more votes, a longer memory, and a sterner sense of justice than we do.

WENDELL BERRY

WHEN I wrote The Weather Makers, I laid out the state of climate science as it was understood in 2005. The book received much acclaim, but it was also criticised by climate-change sceptics as extremist and alarmist. One critic even wrote his own book in search of any faults or exaggerations. I was pleased that he found only a handful of errors, none of great consequence: no wide-ranging science book can hope for 100 per cent accuracy. Here I wish to be my own critic, for it's only with the passing of time that it has become possible to test whether claims about climate change have come to pass.

Since The Weather Makers was published, the Intergovernmental Panel on Climate Change (IPCC) has completed two major summaries, in the form of its fourth and fifth assessment reports, and thousands of scientific publications have added to our understanding of how Earth's climate system responds to carbon pollution. The IPCC does not do its own research. Under the auspices of the UN it provides a report card based on an enormously thorough examination of the published scientific literature. As a result, many details of climate science have been clarified. Not only are the scientific projections of major trends more certain than ever, but today many of us also have firsthand experience of living in a strongly shifted climate. With climate change an experienced reality, and the science verified, the room for climate change denialism keeps shrinking.

Another thing that has changed over the past decade is the accessibility of climate science to the general public. Ten years ago I had to comb the scientific literature and textbooks for explanations of how our gossamer-thin atmosphere interacts with the oceans and land to create components of the climate system. Indeed I found that books written a century earlier by luminaries such as Alfred Russel Wallace were more poetically eloquent on the subject and more informative than many recent works. Today, a great wealth of material is available to anyone curious enough to look, much of it online (including on the excellent website scepticalscience.com). Sadly, the misleading blogs by sceptics have also proliferated, though an increasingly sophisticated public is less easily deceived by them.

Some of the tools that climate scientists use have also changed enormously. Our capacity to model the climate system in time and space, for example, has been transformed. The models used in the 1990s could operate across four orders of magnitude in time and space, while current ones operate across five orders of magnitude. By way of illustration, four orders of magnitude in space extends from a millimetre to 10,000 millimetres (10 metres), while five orders extends from a millimetre to 100,000 millimetres (100 metres). The capacity of the climate models continues to grow at a rate of around an order of magnitude per decade, with each decadal increase involving 10,000 times more calculations for space alone than were required previously. When climate models are able to operate across 14 orders of magnitude — from milliseconds to millennia, and millimetres to thousands of kilometres — they will be able fully to model Earth's climate system.

Despite their vast increase in computational power, the models remain consistent in telling us that our Earth is warming, and will continue to warm in proportion to the volume of fossil fuel we burn. What has changed is the detail they reveal about the things that will unfold. While no climate model can predict the future — simply because the future is impossible to predict — the increasing computational power of the models means that they are becoming ever more useful at explaining how climatic changes are being influenced by humanity.

Studies of past climates are also becoming ever more informative. One that examines over 1000 years of temperature records has shown that climate trends have sometimes differed markedly in the northern and southern hemispheres. One example of hemispheric difference, which the sceptics used to cast doubt on the fact that CO2 causes warming, concerns the medieval warm period. The new study demonstrates unequivocally that this warm period was restricted to the northern hemisphere. But such is the unprecedented volume of greenhouse gases that humans have released into the atmosphere that the climate system is being overwhelmed, and today warming is occurring in both hemispheres.

The contemporary world is changing fast; few changes have been as profound or disturbing as the increases in extreme weather experienced right across the planet. For that dwindling band who continue to deny anthropogenic climate change, this is the new battleground — albeit one which is becoming ever more difficult for them to defend. When, in late 2013, Australian Prime Minister Tony Abbott and his environment minister Greg Hunt argued that there is no link between the warming trend and extreme bushfires, they were arguing not only against science, but also contrary to common sense.

The link between extreme weather and climate change is a critical area for public understanding, because it's the devastating extremes, rather than a shift in averages, that have the greatest impact. To deny the link also permits people to believe that climate change is something only for future generations to worry about. It is not. Our climate has already changed, and over the last decade we have begun to witness more frequently the consequences of our profligate burning of coal, oil and gas. Very recent advances have allowed scientists to quantify the human impact on individual extreme weather events. Extremes in the weather are therefore a good place to begin looking at what has changed in climate science over the past decade.

The Australian Open Tennis Championships are Melbourne's moment in the sun, and during the fortnight of the competition there's hardly another topic of conversation in the city. When, during the 2014 Open, a heatwave of unprecedented ferocity struck Melbourne, bringing a record-breaking four days in a row of temperatures over 41°C, as well as the city's hottest-ever 24-hour period, the stadium built to host the event turned into a furnace. Despite the long and loud warnings of the climate scientists that extreme heatwaves were all but inevitable, Rod Laver Arena had not been built to cope with the threat, and lives and money were put at risk.

With millions of dollars at stake, the tournament organisers were reluctant to call an end to play. For day after scorching day the players slogged it out in 40°C+ temperatures on the courts. The fans stuck around too, though more than 1000 had to be treated for heat stress. Finally, the health risks to both players and spectators became too much, and the multi-million dollar tournament wassuspended.

Australia's growing heatwave crises rarely make global news, but the suspension of the Australian Open made page one in newspapers around the world. The Australian Climate Commission, which I headed until it was closed by the Abbott government in September 2013, had led in warning that heatwaves were becoming more severe in Australia, so I was not surprised when the BBC World Service approached me to explain the relationship between the tennis-cancelling heatwave and climate change.

I told the journalist how the small shift in average temperatures caused by emissions of greenhouse gases was influencing the extreme temperatures across Australia, and indeed the world. The reporter said he'd call me back. When he did, it was to apologise that the interview had been called off. His bosses had told him that unless I could prove that climate change had caused the heatwave they were not interested in the story. I was astonished. In a system as complex as Earth's climate, single factors are rarely the sole cause of anything, so it's usual to talk in terms of influence rather than cause.

But when it comes to the question of climate change's influence on the Australian heatwaves of 2013–14, we do have a definitive answer. In late 2014 Dr Thomas Knutson of the US Geophysical Fluids Dynamics Laboratory at Princeton University, New Jersey, and colleagues published an analysis demonstrating that it is virtually impossible that the extreme heat experienced over Australia in 2013 could have occurred without the influence of human-emitted greenhouse gases. The analysis used a large series of computer models, some of which exclude human influence, while others include it. The Australian heat of 2013 was so extreme that in the 12,000 simulations generated by the models that included only natural factors, in all but one simulation it lay outside the range of probabilities. Moreover, human influence tripled the odds that heatwaves that year would occur as frequently as they did, and doubled the odds that they would be as intense as they were. Our ability to link some kinds of extreme weather to climate change in this way is very new, and is likely to revolutionise our understanding of how we are influencing Earth's climate system.

The average temperature of Earth's lower atmosphere has risen by just under 1°C during the past 200 years. How, you might ask, can such a small average increase have a large effect on extreme weather? There are several aspects that must be considered. One is that, because around 90 per cent of the extra heat captured by greenhouse gases is transferred to the oceans, the oceans are warming dramatically. This alters evaporation, which influences the intensity of rainfall as well as the intensity of cyclones, and indeed the water cycle as a whole. But a second, more important, answer lies in the simple observation that if you plot weather for any location it looks like a bell curve. As you can see from the diagram below, you need only shift the average temperature a little to have a huge effect at the extremes. The graph, incidentally, is a realistic reflection of the extent to which climate change has shifted the average temperature at many locations in the northern hemisphere over the last half century.

As the bell curve shows, we will still experience some cold days in our warmer climate. But we will get many more hot days, as well as a number of record-breaking hot days. During the summer of 2013, more than 3000 weather records were broken in the US, while 123 such records were broken in Australia (which has far fewer weather stations). In 2014 a further 156 records were broken in Australia. We're seeing the climate change before our eyes.

So, how serious have things got with a global average of less than 1°C of warming? There's no better place to begin investigating than heatwaves, which are defined as prolonged periods of above-average temperature at a location that last days to weeks. They are, increasingly, the most fatal of all changes flowing from the increase in average temperatures.

A well-documented heatwave experienced in Melbourne, Australia, in January 2009 shows in detail how heat affects health. After four days of high night-time as well as daytime temperatures, many people's bodies had become overstressed and unable to shed the excess heat. Mortality records reveal that, on average, around 90 people die annually in Melbourne between January 26 and February 1. But during the heatwave of 2009, 374 'excess deaths' were recorded, the great majority occurring after four days of the extreme heat. Bushfires and hurricanes might gain the headlines, but it's easy to understand why doctors have come to dread what they call 'the silent killer'.

Heatwaves have, of course, always occurred. The dustbowl-era American heatwave of 1936 was the hottest on record until 2012. The great Chicago heatwave of 1995, which killed about 600 people, occurred as greenhouse gas concentrations were beginning to climb, and so may have been influenced by climate change. But it was only with the arrival of the twenty-first century that our shifting climate began to influence heatwaves strongly. Humanity's first intimation of just how great a threat to health heatwaves could become arrived in the summer of 2003. Europe's summer that year was the hottest since records began in 1540. The most severe conditions were felt in France, and by August — the traditional time for summer holidays — parts of the country were sweltering in record heat. With their families at the seaside, many elderly people had little support for coping with the extreme conditions, a situation made worse by the lack of preparedness by authorities.

Because heatwaves had not been considered a major threat, many aged-care facilities lacked air conditioning. Remarkably, though, the residents of nursing homes did better than the more capable elderly living alone at home. With nobody to help them, it was the 'fit elderly' who experienced the worst mortality rate, succumbing to overheating, dehydration and heart and lung failure. In France, nearly 15,000 heat-related deaths resulted in a severe overload of mortuary facilities, and a refrigerated warehouse outside Paris was used as temporary storage. Across Europe, more than 70,000 people died of the heat. At current rates of warming, by mid-century the conditions seen in the 2003 European heatwave are set to become the annual summer average.

In July–August 2010, another heatwave caused an estimated 56,000 deaths, this time in western Russia. The extreme conditions were part of a larger phenomenon, the period April–June 2010 being the warmest on record for land areas in the northern hemisphere.

In Australia, heatwaves are hotter, last longer and come earlier than ever before. The number of hot days (above 35°C) across the country per year has doubled in the last 50 years, and the annual number of heatwaves has doubled in Perth. In Adelaide, heatwaves last an average of two days longer than they did 50 years ago, while in Melbourne the heatwave season is starting 17 days earlier. In 2014, Adelaide experienced 13 days over 40°C (the average is currently two), a number expected for the average summer by 2030.

In the last few years, record-breaking heatwaves have been felt from Shanghai to Texas. In the US in 2011–2012, the number of intensive heatwaves was almost three times the long-term average, with the 2011 Texas heatwave and the 2012 heatwave in the Midwest both breaking temperature records. Akin in their extremity to the Russian heatwave of 2010, they give some intimation of the conditions scientists predict are likely to be felt towards the end of this century in the US if we don't rein in emissions.

At the same time that unprecedented heatwaves are being felt across the planet, recent winters in some densely populated areas of the northern hemisphere have been unusually cold relative to the average of the previous two decades. So what's going on? Some scientists are investigating the possibility that the polar vortex is being weakened by the rapid warming of the poles. The polar vortex is a strong current in the atmosphere that separates the frigid air lying over the Arctic from the warmer air to the south. With a diameter of about 1000 kilometres, it is a persistent and powerful cyclone centred on the North Pole, the strength of which varies seasonally and annually, as it is influenced by many factors.

A weak polar vortex is associated with cold winters in the northern hemisphere. Like a top losing momentum, when a weakened polar vortex encounters intense low-pressure systems, it can't push through, but instead flows around them to the north or south. In effect it develops the wobbles. When it's diverted to the south, as during recent winters over North America, great masses of frigid air push south, while over parts of the Arctic, lobes of warm air penetrate deep over the normally frigid ice cap, melting sea ice and permafrost.

It's easy to see how a decreasing temperature gradient can weaken a cyclone like the polar vortex, which feeds on temperature differences. But many other influences are felt on this complex and variable system, and years of study will be required before firm conclusions can be drawn. For the moment, the default position of many scientists is that the recent cold winters are just part of natural variability. Even as Earth warms, we will continue to experience some cold days and cold seasons.

As heatwaves become hotter, longer and more frequent, there's an inevitable impact on forest fires, or bushfires as they're known in Australia. While the relationship is not as simple as that between rising average temperatures and heatwaves, it is clear enough. Three things are necessary for a forest fire to rage — enough fuel, a source of ignition, and the right weather. Sufficient fuel exists much of the time at many locations, and sources of ignition, from dropped cigarette butts to lightning strikes, are ever present. So, as common sense suggests, the right weather conditions are the key factor in determining how severe a bushfire will become. Few places are as bushfire prone as southeastern Australia, and the most severe and damaging fire in the nation's history provides a clear picture of how climate change is influencing fire risk.

(Continues…)


Excerpted from "Atmosphere of Hope"
by .
Copyright © 2015 Tim Flannery.
Excerpted by permission of Grove Atlantic, Inc..
All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher.
Excerpts are provided by Dial-A-Book Inc. solely for the personal use of visitors to this web site.

Table of Contents

Introduction ix

Part 1 Climate Science

Chapter 1 The Weather Makers: Right or Wrong? 3

Chapter 2 The Waters of a Warming World 21

Chapter 3 Ominously Acidic Oceans 35

Chapter 4 How are the Animals Doing? 43

Chapter 5 The Great Climatic Event Horizon 55

Part 2 The Knife Blade We Perch On

Chapter 6 The Great Disconnect 69

Chapter 7 Coal: Decline of a Giant 78

Chapter 8 What Future, Oil? 89

Chapter 9 Gas: Last Hurrah or Bridge to the Future? 96

Chapter 10 Divestment and the Carbon Bubble 105

Chapter 11 Where's Nuclear? 113

Chapter 12 Sunlight and Wind: Winning the Race 119

Chapter 13 At Last, EVs 127

Part 3 Fight for the Future

Chapter 14 Adapting? 135

Chapter 15 Geoengineering: A Way Out? 140

Chapter 16 The Gigatonne Challenge 151

Chapter 17 Silicate Rocks, Cement and Smart Chemistry 167

Chapter 18 The New Carbon Capture and Storage 177

Chapter 19 The 2030 Challenge 185

Chapter 20 Deadline 2050 200

Chapter 21 The Growing Power of the Individual 205

Envoi 212

Afterword 214

Organisations Fighting for a Better Climate 217

Acknowledgements 219

Endnotes 221

Index 243

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews