Atoms in Strong Light Fields

Atoms in Strong Light Fields

Paperback(Softcover reprint of the original 1st ed. 1985)

View All Available Formats & Editions
Use Standard Shipping. For guaranteed delivery by December 24, use Express or Expedited Shipping.

Product Details

ISBN-13: 9783642856938
Publisher: Springer Berlin Heidelberg
Publication date: 04/09/2012
Series: Springer Series in Chemical Physics , #28
Edition description: Softcover reprint of the original 1st ed. 1985
Pages: 342
Product dimensions: 6.10(w) x 9.25(h) x 0.03(d)

Table of Contents

1.1 The Strong Light Field.- 1.1.1 The Classical Nature of the Field.- 1.1.2 The Parameters of a Light Field.- 1.2 The Atom.- 1.2.1 One-Electron and Multi-Electron Approximations.- 1.2.2 The Structure of Atomic Spectra.- 1.2.3 Selection Rules.- 1.3 Interaction of an Atom and a Light Field.- 1.3.1 The Dipole Approximation.- 1.3.2 The Hamiltonian of the Dipole Interaction.- 1.3.3 An Atom in a Circularly Polarized Electromagnetic Field.- 1.3.4 The F loquet Theorem.- 1.3.5 Monochromatic Perturbation as a Stationary Problem.- 1.3.6 Exact Solutions.- 2. Time-Dependent Perturbation Theory.- 2.1 First-Order Perturbation Theory.- 2.1.1 The System of Equations.- 2.1.2 The Probability of One-Photon Transitions.- 2.1.3 Monochromatic Perturbations.- 2.1.4 Sudden Perturbations.- 2.1.5 Large Perturbation Times.- 2.1.6 The Role of the Shape of the Envelope of the Electromagnetic Field.- 2.1.7 Criteria of Applicability.- 2.2 Second-Order Perturbation Theory.- 2.2.1 Probability of a Two-Photon Transition.- 2.2.2 Transitions Induced by Two Perturbations.- 2.2.3 Large Perturbation Times.- 2.2.4 Sudden Perturbations.- 2.2.5 Criteria of Applicability.- 2.3 The Diagrammatic Technique for Monochromatic Perturbations...- 2.3.1 First-Order Perturbation Theory.- 2.3.2 Second-Order Perturbation Theory.- 2.3.3 The Rules for Constructing Diagrams.- 2.3.4 Partial Summation of Diagrams.- 2.4 Perturbation Theory of Arbitrary Order.- 2.4.1 The Amplitudes of Different Processes.- 2.4.2 Large Perturbation Times.- 2.4.3 Criteria for Applying Perturbation Theory of Arbitrary Order.- 2.4.4 Convergence of Expansion Series in Perturbation Theory.- 2.5 Monochromatic Perturbation and Degenerate States.- 2.5.1 A Single Degenerate Level.- 2.5.2 Mixing Degenerate Levels in a Field Due to the Presence of Other Level s.- 2.5.3 Near-Degenerate Levels.- 2.5.4 Time-Dependent Diagrams.- 2.5.5 Two-Photon Mixing of Degenerate States in Low-Frequency Fields.- 2.5.6 One-Photon Mixing of Degenerate States in Low-Frequency Fields.- 2.5.7 Competition Between One- and Two-Photon Mixing.- 2.5.8 Approximate Degeneracy.- 2.5.9 Criteria of Applicability.- 2.6 The Green’s Function in Time-Dependent Perturbation Theory.- 2.6.1 The Green’s Function.- 2.6.2 Application of the Green’s Function.- 2.6.3 Realistic Atomic Potentials.- 3. The Resonance Approximation.- 3.1 A Two-Level System in a Resonance Field.- 3.1.1 Wave Functions.- 3.1.2 Criteria of Applicability.- 3.1.3 Adiabatic Introduction of Perturbations.- 3.1.4 Sudden Perturbations.- 3.1.5 Adiabatic or Sudden Perturbation?.- 3.1.6 Quasi-Energies in the Resonance Case.- 3.2 Multi-Photon Resonance.- 3.2.1 Two-Photon Resonance.- 3.2.2 Criteria of Applicability.- 3.2.3 Multi-Photon Resonance.- 3.3 Degeneracy in a Resonance Field.- 3.3.1 Equations.- 3.3.2 Basis Solutions.- 3.3.3 Adiabatic Introduction of a Perturbation.- 3.3.4 Approximate Degeneracy.- 3.3.5 Degeneracy and the Influence of Light on an Atom.- 3.4 A Two-Level System in a Circularly Polarized Electromagnetic Field.- 3.4.1 Statement of the Problem.- 3.4.2 Solution and Discussion.- 3.5 A Two-Level System in a Resonance Field: Time-Dependent Parameters.- 3.5.1 The System of Equations.- 3.5.2 An Exactly Solvable Problem.- 3.5.3 The General Solution.- 3.6 A Three-Level System in Two Fields.- 3.6.1 Mixing in a Three-Level System.- 3.6.2 Zero Detuning.- 3.6.3 Population Inversion in a Three-Level System.- 4. The Adiabatic Approximation.- 4.1 General Theory.- 4.1.1 The Landau-Dykhne Adiabatic Approximation.- 4.1.2 The Born-Fock Adiabatic Approximation.- 4.2 Bound-Bound Resonance Transitions.- 4.2.1 Transition Probability per Unit Time.- 4.2.2 Criterion of Applicability.- 4.2.3 The Limiting Transition in Perturbation Theory.- 4.2.4 Resonance Mixing in a Two-Level System.- 4.2.5 Transitions in Multi-Level Systems.- 4.3 A Two-Level System in a Strong Field of Arbitrary Frequency.- 4.3.1 Adiabatic Wave Functions.- 4.3.2 Average Populations.- 4.3.3 Results, Limiting Cases, and a Comparison with Numerical Calculations.- 4.4 Transitions Between Degenerate States.- 4.4.1 Reducing the Problem Concerning Degenerate States to One Involving a System that Has a Constant Dipole Moment.- 4.4.2 Degeneracy and Transition Probability.- 4.5 Bound-Free Transitions.- 4.5.1 Comparison of the Perturbation in Discrete and Continuous States.- 4.5.2 Probability of a Transition in a Low-Frequency Field.- 4.5.3 Limiting Cases.- 5. Laser Radiation.- 5.1 Intensity of Radiation.- 5.1.1 Spatial-Temporal Distribution of the Intensity of Laser Radiation.- 5.1.2 Dependence of the Intensity on the Type, the Design,.- and the Mode of Operation of a Laser.- 5.1.3 Increasing the Intensity of Laser Radiation.- 5.1.4 Varying the Intensity of Laser Radiation.- 5.1.5 Measuring the Intensity of Radiation.- 5.2 Frequency of the Radiation.- 5.2.1 Changes in the Tunability and Spectral Narrowing.- 5.2.2 The Single-Mode Laser.- 5.2.3 The Measurement of Laser Frequency.- 5.3 The Polarization of the Radiation.- 5.4 The Monochromaticity of Laser Radiation.- 6. Experimental Aspects.- 6.1 Atomic Target.- 6.2 Competing Processes.- 6.2.1 Collisions Between Identical Atoms.- 6.2.2 Collisions with Electrons.- 6.3 The Self-Induced Distortion of Intense Light in Atomic Targets.- 6.4 Experimental Methods for Studying the Phenomena Produced by Strong Electromagnetic Fields Interacting with Atoms.- 6.4.1 Detecting Ions.- 6.4.2 Absorption of Light.- 6.4.3 One-Photon Absorption.- 6.4.4 Two-Photon Absorption.- 6.4.5 Multi-Photon Ionization Spectroscopy.- 6.4.6 Detecting the Light Produced in the Target.- 6.5 The Measurement of the Main Parameters that Characterize the Interaction Between Intense Electromagnetic Radiation and an Atom.- 6.5.1 Degree of Nonlinearity.- 6.5.2 Multi-Photon Cross Sections.- 7. Nonresonant Phenomena.- 7.1 Nonlinear Atomic Susceptibilities.- 7.1.1 The Scattering of Light and the Linear Susceptibility.- 7.1.2 The Nonlinear Scattering of Light and Nonlinear Susceptibility.- 7.1.3 Linear and Nonlinear Susceptibilities and the Perturbation of Atomic Spectra.- 7.2 Perturbation of Isolated Atomic States.- 7.2.1 Dynamic Polarizability of an Isolated Nondegenerate Atomic State.- 7.2.2 Dynamic Hyper-Polarizability.- 7.2.3 Criteria for Applying Perturbation Theory.- 7.2.4 The Dynamic Polarizability as a Function of the Perturbing Field.- 7.2.5 Experimental Data.- 7.3 Perturbation of Degenerate States.- 7.3.1 Two Adjacent Levels.- 7.3.2 The General Case.- 7.3.3 A Perturbation in an Elliptically Polarized Field.- 7.3.4 Perturbation of the Hydrogen Atom Spectrum.- 7.4 Nonlinear Scattering of Light.- 7.4.1 The Interrelation of Nonlinear Scattering Processes.- Due to an External Field.- 7.4.2 Spontaneous Two-Photon Scattering.- 7.4.3 Stimulated Two-Photon Emission.- 7.4.4 Hyper-Raman Scattering.- 7.4.5 Generation of the Third Harmonic.- 7.4.6 Other Processes Determined by x(3).- 7.5 Nonresonant, Nonlinear Ionization.- 7.5.1 The Mechanisms of Nonlinear Ionization.- 7.5.2 Numerical Estimates.- 7.6 Ionization in a Short-Range Potential.- 7.6.1 Tunneling Ionization.- 7.6.2 Ionization by a Circularly Polarized Field.- 7.6.3 Ionization by an Elliptically Polarized Field.- 7.6.4 The Intermediate Case (?2~1).- 7.6.5 Nonlinear Detachment of an Electron from a Negatively Charged Ion.- 7.7 The Ionization of Atoms.- 7.7.1 The Power-Law Dependence of the Ionization Probability on the Field Strength.- 7.7.2 Dependence of the Multi-Photon Cross Section on the Frequency and the Degree of Ellipticity of the Light.- 7.7.3 Criteria for Applying Perturbation Theory.- 7.7.4 Calculation of Multi-Photon Cross Section and Their Comparison with Experimental Data.- 7.7.5 The Angular Distribution of the Emitted Photoelectrons.- 7.7.6 Tunneling Ionization of Atoms (? « 1).- 7.7.7 The Intermediate Case (?2~l).- 8. Resonance Phenomena.- 8.1 Spontaneous Emission of Light by an Atom in a Resonance Field.- 8.1.1 The Natural Line Width.- 8.1.2 The Lorentzian Line Shape.- 8.1.3 Spontaneous Emission of Photons in a Weak Resonance Field.- 8.1.4 Spontaneous Emission of Photons in a Strong Resonance Field.- 8.1.5 Introduction of an External Field into the Resonance Excitation.- 8.2 Resonance Fluorescence.- 8.2.1 A Weak External Field.- 8.2.2 Criterion for Applying Perturbation Theory.- 8.2.3 The Density-Matrix Method.- 8.2.4 Elastic (Rayleigh) Scattering in Strong Fields.- 8.2.5 Inelastic Scattering.- 8.2.6 Comparison with Experiment.- 8.2.7 The Bloch-Siegert Shift.- 8.2.8 The Test Field.- 8.2.9 Multi-Photon Resonance.- 8.3 Multi-Photon Excitation and Emission.- 8.3.1 Selection Rules for Multi-Photon Transitions.- 8.3.2 The Probability of Multi-Photon Bound-Bound Transitions.- 8.3.3 Quadrupole Transitions.- 8.3.4 Multi-Photon Mixing of Resonance States.- 8.3.5 Competing Processes in the Multi-Photon Excitation of Atoms.- 8.3.6 Stimulated Multi-Photon Emission.- 8.4 Spontaneous Raman Scattering.- 8.4.1 A Weak Perturbation.- 8.4.2 Raman Scattering Frequencies for a Strong Perturbation.- 8.4.3 The Probability of Raman Scattering Under the Influence of a Strong Perturbation.- 8.4.4 Multi-Photon Raman Scattering.- 8.5 A Three-Level System in Two Resonance Fields.- 8.5.1 The System of Equations.- 8.5.2 Perturbation Theory.- 8.5.3 A Strong External Field.- 8.5.4 Two Strong External Fields.- 8.6 Resonance Ionization of Atoms.- 8.6.1 Resonance Ionization in a Weak Field.- 8.6.2 Mechanisms of Resonance Ionization in a Strong Field.- 8.6.3 Multi-Photon Ionization in a Strong Field.- 8.6.4 Resonance Ionization in the Adiabatic Inversion Field.- 8.6.5 The Polarization of Electrons and Nuclei in the Event of Resonance Ionization.- 8.6.6 Angular Distribution of the Electrons in the Resonance Ionizaton Process.- 9. Conclusion.- 9.1 The Role of the Non-monochromaticity of Laser Radiation.- 9.1.1 Direct Multi-Photon Ionization.- 9.1.2 Tunneling Ionization in a Variable Field.- 9.1.3 Multi-Photon Excitation of Atoms.- 9.1.4 Perturbation of Atomic Levels.- 9.2 Many-Electron Approximation.- 9.2.1 The Dynamic Polarization of the Atomic Core.- 9.2.2 Two-Electron Multi-Photon Ionization.- 9.3 Ultrahigh Fields.- 9.4 Highly Excited Atomic States in a Strong Electromagnetic Field.- 9.4.1 Radiative Transitions Between Highly Excited Atomic States.- 9.4.2 The Dynamic Polarizabili ty of Highly Excited Atomic States.- 9.4.3 Multi-Photon Ionization of Highly Excited States.- 9.4.4 Tunneling Ionization from Highly Excited States.- 9.4.5 Stochastic Instability of the Classical Electron in a Variable Field and the Diffusion Ionization of Highly Excited Atoms.- Notation Index.- References.

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews