Begründung der Funktionentheorie: Auf alten und neuen Wegen
Unter "Begrundung der Funktionentheorie" verstehen wir die auf moglichst elementarem Weg gewonnene Darstellung einer Funktion f (z) == u (x, y) + iv(x, y) von z == x + yi durch gewohnliche Potenzreihen, wenn iiber f(z) gewisse moglichst elementare Voraussetzungen gemacht werden. Diese konnen sehr verschiedener Art sein. Wahrend aber wohl aIle Lehrbiicher der Funktionentheorie nur einen der beiden "klassi- schen" Wege verfolgen, bei denen die Existenz der Ableitung f'(z) (GOURSAT) oder deren Existenz und Stetigkeit (CAUCHY) den Ausgangs- punkt bildet, werden hier auBer jenen beiden noch vier andere Wege bis zu dem genannten Endziel gebahnt. Einer von ihnen (MORERA 1901, § 26) wird hauptsachlich nur aus historischem Interesse durchgefuhrt. Die drei anderen ruhren in der vorliegenden Gestalt vom Verfasser her und gehen von geringeren Voraussetzungen aus als GOURSAT, d. h. der Existenz von f' (z). Nur einer von ihnen war schon in der Schrift "Kurven- integrale und Begrundung der Funktionentheorie", Springer-Verlag 1948, enthalten. Damit war von mir ein Wunsch erfullt worden, in dem sich BOLZA, wie er mir erzahlte, 1912 in London mit HILBERT begegnet war. Wichtige Teile der Funktionentheorie beginnen erst nach der Be- griindung, wenn man also schon im Besitz der Potenzreihen fur f(z) ist. Auf diese Teile gehen wir nicht mehr ein, da wir ja nicht ein "Lehrbuch der Funktionentheorie", sondern gewissermaBen nur den A nfang eines sol chen auf sehr verschiedenen Wegen liefern wollen. Abschnitt A bringt Vorkenntnisse, die unmittelbar oder mittelbar wirklich benutzt werden, und zwar mit Beweisen der angefuhrten Satze.
1120731302
Begründung der Funktionentheorie: Auf alten und neuen Wegen
Unter "Begrundung der Funktionentheorie" verstehen wir die auf moglichst elementarem Weg gewonnene Darstellung einer Funktion f (z) == u (x, y) + iv(x, y) von z == x + yi durch gewohnliche Potenzreihen, wenn iiber f(z) gewisse moglichst elementare Voraussetzungen gemacht werden. Diese konnen sehr verschiedener Art sein. Wahrend aber wohl aIle Lehrbiicher der Funktionentheorie nur einen der beiden "klassi- schen" Wege verfolgen, bei denen die Existenz der Ableitung f'(z) (GOURSAT) oder deren Existenz und Stetigkeit (CAUCHY) den Ausgangs- punkt bildet, werden hier auBer jenen beiden noch vier andere Wege bis zu dem genannten Endziel gebahnt. Einer von ihnen (MORERA 1901, § 26) wird hauptsachlich nur aus historischem Interesse durchgefuhrt. Die drei anderen ruhren in der vorliegenden Gestalt vom Verfasser her und gehen von geringeren Voraussetzungen aus als GOURSAT, d. h. der Existenz von f' (z). Nur einer von ihnen war schon in der Schrift "Kurven- integrale und Begrundung der Funktionentheorie", Springer-Verlag 1948, enthalten. Damit war von mir ein Wunsch erfullt worden, in dem sich BOLZA, wie er mir erzahlte, 1912 in London mit HILBERT begegnet war. Wichtige Teile der Funktionentheorie beginnen erst nach der Be- griindung, wenn man also schon im Besitz der Potenzreihen fur f(z) ist. Auf diese Teile gehen wir nicht mehr ein, da wir ja nicht ein "Lehrbuch der Funktionentheorie", sondern gewissermaBen nur den A nfang eines sol chen auf sehr verschiedenen Wegen liefern wollen. Abschnitt A bringt Vorkenntnisse, die unmittelbar oder mittelbar wirklich benutzt werden, und zwar mit Beweisen der angefuhrten Satze.
69.95 In Stock
Begründung der Funktionentheorie: Auf alten und neuen Wegen

Begründung der Funktionentheorie: Auf alten und neuen Wegen

by Lothar Heffter
Begründung der Funktionentheorie: Auf alten und neuen Wegen

Begründung der Funktionentheorie: Auf alten und neuen Wegen

by Lothar Heffter

Paperback(2. Auflage 1960)

$69.95 
  • SHIP THIS ITEM
    In stock. Ships in 6-10 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Unter "Begrundung der Funktionentheorie" verstehen wir die auf moglichst elementarem Weg gewonnene Darstellung einer Funktion f (z) == u (x, y) + iv(x, y) von z == x + yi durch gewohnliche Potenzreihen, wenn iiber f(z) gewisse moglichst elementare Voraussetzungen gemacht werden. Diese konnen sehr verschiedener Art sein. Wahrend aber wohl aIle Lehrbiicher der Funktionentheorie nur einen der beiden "klassi- schen" Wege verfolgen, bei denen die Existenz der Ableitung f'(z) (GOURSAT) oder deren Existenz und Stetigkeit (CAUCHY) den Ausgangs- punkt bildet, werden hier auBer jenen beiden noch vier andere Wege bis zu dem genannten Endziel gebahnt. Einer von ihnen (MORERA 1901, § 26) wird hauptsachlich nur aus historischem Interesse durchgefuhrt. Die drei anderen ruhren in der vorliegenden Gestalt vom Verfasser her und gehen von geringeren Voraussetzungen aus als GOURSAT, d. h. der Existenz von f' (z). Nur einer von ihnen war schon in der Schrift "Kurven- integrale und Begrundung der Funktionentheorie", Springer-Verlag 1948, enthalten. Damit war von mir ein Wunsch erfullt worden, in dem sich BOLZA, wie er mir erzahlte, 1912 in London mit HILBERT begegnet war. Wichtige Teile der Funktionentheorie beginnen erst nach der Be- griindung, wenn man also schon im Besitz der Potenzreihen fur f(z) ist. Auf diese Teile gehen wir nicht mehr ein, da wir ja nicht ein "Lehrbuch der Funktionentheorie", sondern gewissermaBen nur den A nfang eines sol chen auf sehr verschiedenen Wegen liefern wollen. Abschnitt A bringt Vorkenntnisse, die unmittelbar oder mittelbar wirklich benutzt werden, und zwar mit Beweisen der angefuhrten Satze.

Product Details

ISBN-13: 9783540025535
Publisher: Springer Berlin Heidelberg
Publication date: 01/01/1960
Edition description: 2. Auflage 1960
Pages: 64
Product dimensions: 6.10(w) x 9.25(h) x 0.01(d)
Language: German

Table of Contents

A. Vorkenntnisse.- § 1. Unendliche Folgen.- § 2. Unendliche Reihen.- § 3. Reelle Funktionen f(x) einer reellen Veränderlichen x.- § 4. Bestimmtes Integral $$ \int\limits_asubb {f(x)dx} $$.- § 5. Das bestimmte Integral als Funktion der oberen Grenze und das unbestimmte Integral.- § 6. Paare von reellen Veränderlichen x, y.- § 7. Reelle Funktionen f (x, y) der reellen Veränderlichen x, y.- § 8. Totale und partielle Differenzierbarkeit einer Funktion f (x, y).- § 9. Treppenintegral $$\int\limits_{a,\alpha }sub{b,\beta } {(f(x,y)dx + g(x,y)dy)}$$.- § 10. Flächenintegral einer Funktion f (x, y).- § 11. Gausssche Sätze über Flächenintegral und Randintegral.- § 12. Komplexe Funktionen einer komplexen Veränderlichen z— x + yi.- § 13. Komplexe Treppenintegrale $$\int\limits_{{z_0}}subz {(f(z)dz}$$.- § 14. Potenzreihen und ihr Konvergenzkreis.- § 15. Eindeutigkeit, Stetigkeit und DifFerenzierbarkeit einer Potenzreihe.- § 16. Gleichmäßige Konvergenz der Potenzreihe.- B. Sechs verschiedene Wege zur Begründung der Funktionentheorie.- I. Definition der „analytischen Funktion“.- II. Die Wege von Cauchy 1814 und Goursat 1900.- III. Der Weg von Looman-Menchoff.- IV. Ältere Wege bei Voraussetzung eindeutiger Integrierbarkeit von f (z).- V. Der einfachste Weg bei Voraussetzung eindeutiger Integrierbarkeit von f(z) 1936.- VI. Ein neuer Weg unter Benutzung von Polarkoordinaten 1951.- VII. Vergleich der Voraussetzungen in Kap. II–VI.- C. Originalliteratur zur Geschichte der Begründung der Funktionentheorie.- Lehrwerke der Funktionentheorie.- Verzeichnis der gebrauchten Begriffe.
From the B&N Reads Blog

Customer Reviews