| Preface | xi |
| Acknowledgments | xiii |
| I | Theoretical Concepts | 1 |
| Chapter 1 | Introduction | 3 |
| 1.1 | Nonlinear Filtering | 3 |
| 1.2 | The Problem and Its Conceptual Solution | 4 |
| 1.3 | Optimal Algorithms | 7 |
| 1.3.1 | The Kalman Filter | 7 |
| 1.3.2 | Grid-Based Methods | 9 |
| 1.3.3 | Benes and Daum Filters | 10 |
| 1.4 | Multiple Switching Dynamic Models | 11 |
| 1.5 | Basics of Target Tracking | 14 |
| 1.6 | Summary | 16 |
| References | 16 |
| Chapter 2 | Suboptimal Nonlinear Filters | 19 |
| 2.1 | Analytic Approximations | 19 |
| 2.2 | Numerical Methods | 22 |
| 2.3 | Gaussian Sum Filters | 24 |
| 2.3.1 | Static MM Estimator | 25 |
| 2.3.2 | Dynamic MM Filter | 26 |
| 2.4 | Unscented Kalman Filter | 28 |
| 2.4.1 | Filtering Equations | 29 |
| 2.4.2 | The Unscented Transform | 30 |
| 2.5 | Summary | 32 |
| References | 32 |
| Chapter 3 | A Tutorial on Particle Filters | 35 |
| 3.1 | Monte Carlo Integration | 35 |
| 3.2 | Sequential Importance Sampling | 37 |
| 3.3 | Resampling | 41 |
| 3.4 | Selection of Importance Density | 45 |
| 3.4.1 | The Optimal Choice | 45 |
| 3.4.2 | Suboptimal Choices | 47 |
| 3.5 | Versions of Particle Filters | 48 |
| 3.5.1 | SIR Filter | 48 |
| 3.5.2 | Auxiliary SIR Filter | 49 |
| 3.5.3 | Particle Filters with an Improved Sample Diversity | 52 |
| 3.5.4 | Local Linearization Particle Filters | 55 |
| 3.5.5 | Multiple-Model Particle Filter | 57 |
| 3.6 | Computational Aspects | 58 |
| 3.7 | Summary | 61 |
| 3.8 | Appendix: Combination of Quadratic Terms | 61 |
| References | 62 |
| Chapter 4 | Cramer-Rao Bounds for Nonlinear Filtering | 67 |
| 4.1 | Background | 68 |
| 4.2 | Recursive Computation of the Filtering Information Matrix | 71 |
| 4.3 | Special Cases | 73 |
| 4.3.1 | Additive Gaussian Noise | 73 |
| 4.3.2 | Linear/Gaussian Case | 75 |
| 4.3.3 | Zero Process Noise | 76 |
| 4.4 | Multiple-Switching Dynamic Models | 76 |
| 4.4.1 | Enumeration Method | 77 |
| 4.4.2 | Deterministic Trajectory | 79 |
| 4.5 | Summary and Further Reading | 80 |
| References | 80 |
| II | Tracking Applications | 83 |
| Chapter 5 | Tracking a Ballistic Object on Reentry | 85 |
| 5.1 | Introduction | 85 |
| 5.2 | Target Dynamics and Measurements | 86 |
| 5.3 | Cramer-Rao Bound | 88 |
| 5.4 | Tracking Filters | 93 |
| 5.5 | Numerical Results | 94 |
| 5.6 | Concluding Remarks | 98 |
| References | 101 |
| Chapter 6 | Bearings-Only Tracking | 103 |
| 6.1 | Introduction | 103 |
| 6.2 | Problem Formulation | 104 |
| 6.2.1 | Nonmaneuvering Case | 104 |
| 6.2.2 | Maneuvering Case | 106 |
| 6.2.3 | Multiple Sensor Case | 108 |
| 6.2.4 | Tracking with Constraints | 108 |
| 6.3 | Cramer-Rao Lower Bounds | 109 |
| 6.3.1 | Nonmaneuvering Case | 109 |
| 6.3.2 | Maneuvering Case | 110 |
| 6.3.3 | Multiple Sensor Case | 112 |
| 6.4 | Tracking Algorithms | 113 |
| 6.4.1 | Nonmaneuvering Case | 113 |
| 6.4.2 | Maneuvering Target Case | 121 |
| 6.4.3 | Multiple Sensor Case | 127 |
| 6.4.4 | Tracking with Hard Constraints | 127 |
| 6.5 | Simulation Results | 129 |
| 6.5.1 | Nonmaneuvering Case | 130 |
| 6.5.2 | Maneuvering Case | 138 |
| 6.5.3 | Multiple Sensor Case | 145 |
| 6.5.4 | Tracking with Hard Constraints | 147 |
| 6.6 | Summary | 148 |
| 6.7 | Appendix: Linearized Transition Matrix for MP-EKF | 148 |
| References | 150 |
| Chapter 7 | Range-Only Tracking | 153 |
| 7.1 | Introduction | 153 |
| 7.2 | Problem Description | 154 |
| 7.3 | Cramer-Rao Bounds | 157 |
| 7.3.1 | Derivations | 157 |
| 7.3.2 | Analysis | 158 |
| 7.4 | Tracking Algorithms | 164 |
| 7.5 | Algorithm Performance and Comparison | 168 |
| 7.6 | Application to Ingara ISAR Data | 173 |
| 7.7 | Summary | 176 |
| References | 178 |
| Chapter 8 | Bistatic Radar Tracking | 179 |
| 8.1 | Introduction | 179 |
| 8.2 | Problem Formulation | 180 |
| 8.3 | Cramer-Rao Bounds | 183 |
| 8.3.1 | Derivations | 183 |
| 8.3.2 | Analysis | 185 |
| 8.4 | Tracking Algorithms | 189 |
| 8.4.1 | Stage 1 of Tracker | 191 |
| 8.4.2 | Stage 2 of Tracker | 196 |
| 8.5 | Algorithm Performance | 196 |
| 8.6 | Summary | 199 |
| References | 201 |
| Chapter 9 | Tracking Targets Through the Blind Doppler | 203 |
| 9.1 | Introduction | 203 |
| 9.2 | Problem Formulation | 204 |
| 9.3 | EKF-Based Track Maintenance | 206 |
| 9.4 | Particle Filter-Based Solution | 208 |
| 9.5 | Simulation Results | 210 |
| 9.6 | Summary | 213 |
| References | 214 |
| Chapter 10 | Terrain-Aided Tracking | 215 |
| 10.1 | Introduction | 215 |
| 10.2 | Problem Description and Formulation | 216 |
| 10.2.1 | Problem Description | 216 |
| 10.2.2 | Dynamics and Measurement Models for VS-IMM | 219 |
| 10.2.3 | Dynamic Models for VS-MMPF | 221 |
| 10.3 | Variable Structure IMM | 227 |
| 10.3.1 | Model Set Update | 229 |
| 10.4 | Variable Structure Multiple-Model Particle Filter | 229 |
| 10.4.1 | Prediction Step | 230 |
| 10.4.2 | Update Step | 230 |
| 10.5 | Simulation Results | 231 |
| 10.6 | Conclusions | 236 |
| References | 237 |
| Chapter 11 | Detection and Tracking of Stealthy Targets | 239 |
| 11.1 | Introduction | 239 |
| 11.2 | Target and Sensor Models | 240 |
| 11.2.1 | Target Model | 240 |
| 11.2.2 | Sensor Model | 241 |
| 11.3 | Conceptual Solution in the Bayesian Framework | 242 |
| 11.4 | A Particle Filter for Track-Before-Detect | 244 |
| 11.5 | A Numerical Example | 247 |
| 11.6 | Performance Analysis | 251 |
| 11.6.1 | Tracking Error Performance | 251 |
| 11.6.2 | Detection Performance | 254 |
| 11.7 | Summary and Extensions | 257 |
| References | 258 |
| Chapter 12 | Group and Extended Object Tracking | 261 |
| 12.1 | Introduction | 261 |
| 12.2 | Tracking Model | 263 |
| 12.3 | Formal Bayesian Solution | 265 |
| 12.4 | Affine Model | 268 |
| 12.5 | Particle Filters | 269 |
| 12.5.1 | SIR Particle Filter | 270 |
| 12.5.2 | Rao-Blackwellized Particle Filter | 271 |
| 12.6 | Simulation Example | 273 |
| 12.7 | Concluding Remarks | 277 |
| References | 284 |
| Epilogue | 287 |
| Appendix | Coordinate Transformations for Tracking | 289 |
| A.1 | Geodetic to ECEF and Vice Versa | 290 |
| A.2 | ECEF to Tangential Plane and Vice Versa | 290 |
| References | 292 |
| List of Acronyms | 293 |
| About the Authors | 295 |
| Index | 297 |