Table of Contents
TC 193-RLS – Technical Committee Members; Foreword; 1 Introduction, by J.-L. Granju, B. Bissonnette and L. Courard; 1.1 Introduction; 2 Overlay Design Process, by D.W. Fowler and M. Treviño; 2.1 Purpose of Overlays; 2.2 Materials Selection; 2.2.1 Slabs on Grade/Pavements; 2.2.2 Structural Slabs and Decks; 2.3 Joints; 2.3.1 Slabs on Grade/Pavements; 2.3.2 Structural Slabs and Decks; 2.4 Construction Procedures; 2.4.1 Steel Placement; 2.4.2 Environmental Effects; 2.4.3 Curing; 2.5 The BCO Process; 2.6 Project Selection; 2.6.1 Design; 2.6.2 Construction; 2.6.3 Quality Control/Quality Assurance (QA/QC); 2.7 Conclusions; References; 3 Condition Evaluation of the Existing Structure Prior to Overlay, by L. Courard, M. Treviño and B. Bissonnette; 3.1 Introduction; 3.2 Assessment of Pavement/Substrate Base; 3.2.1 Principles of Evaluation; 3.2.2 Condition Survey of Distress; 3.2.3 Test Methods for Pavement/Substrate Base; 3.3 Assessment of Structural Slab/Deck/Support; 3.3.1 Introduction; 3.3.2 Condition Survey of Distress; 3.3.3 Structural Evaluation; 3.3.4 Material Evaluation; 3.3.5 Test Methods and Procedures; 3.3.6 Methods for the Determination of Superficial Porosity; 3.4 Feasibility Analysis; References; 4 Bond, by J. Silfwerbrand, H. Beushausen and L. Courard; 4.1 Classification of Bond 4.2 Definition of Bond Strength 4.3 Fundamental Bond Mechanisms; 4.4 Factors Affecting Bond; 4.4.1 Concrete Properties; 4.4.2 Removal of Deteriorated Concrete; 4.4.3 Concrete Removal behind Rebars, Rebar Cleaning, and Rebar Replacement; 4.4.4 Cleaning after Concrete Removal; 4.4.5 Surface Properties; 4.4.6 Surface Preparation; 4.4.7 Bonding Agents; 4.4.8 Mechanical Devices Crossing the Interface; 4.4.9 Concrete Placement; 4.4.10 Concrete Curing; 4.4.11 Short-term Bond Properties; 4.4.12 Long-term Bond Properties; 4.4.13 Traffic Vibrations; 4.5 Test Methods; 4.5.1 General; 4.5.2Shear Test Methods; 4.5.3 Comparisons between Tensile Bond Strength and Shear Bond Strength; 4.6 Evaluation; 4.7 Design Strength Values; 4.8 Performance Requirements; References; 5 Structural Behaviour, by E. Denarié, J. Silfwerbrand and H. Beushausen; 5.1 Introduction; 5.2 Actions; 5.3 Performance of Composite Structures; 5.4 Different Forms of Restraint and Effect of Joints; 5.5 Mechanical Behaviour of Composite Structures with Cementitious Materials of Different Ages; 5.5.1 Overview of Existing Analytical Models; 5.5.2 Normal Stresses Due to Differential Shrinkage in Composite Beams with Complete Bond; 5.5.3 Shear Stresses Due to Differential Shrinkage in Composite Beams; 5.5.4 Normal and Shear Stresses Due to Differential Shrinkage in Composite Beams with Incomplete Bond; 5.6 Experimental Tests; 5.6.1 Swedish Tests on Mechanically Loaded Concrete Beams; 5.6.2 Swedish Tests on Concrete Beams Subjected to Differential Shrinkage; 5.6.3 Swedish Tests on Concrete Slabs; 5.6.4 Tests at EPFL on Composite Beams with Normal Concretes of Different Ages; 5.6.5 Other Tests; 5.7 On Restrained Shrinkage Set-ups; 5.8 Numerical Modelling; 5.9 Conclusions; 5.10 Outlook for Future Research; References; 6 Debonding, by A. Turatsinze, H. Beushausen, R. Gagné, J.-L. Granju, J. Silfwerbrand and R. Walter; 6.1 Introduction; 6.2 Impact of Debonding; 6.3 Brief Summary of Debonding; 6.4 Methods for Monitoring Debonding; 6.4.1 Non-destructiveMethods; 6.4.2 Semi-destructive Methods; 6.4.3 Laboratory Tests; 6.5 Debonding Mechanism; 6.6 Debonding Modeling; 6.7 Role of Reinforcement of Overlays; 6.7.1 In Situ Findings; 6.7.2 Need to Distinguish between “First Monotonic Loading” and “Shrinkage-Pre-cracking Plus Fatigue”; 6.8 Crack Propagation and Crack Opening; 6.8.1 First Monotonic Loading; 6.8.2 Shrinkage-Pre-Cracking and Fatigue Loading; 6.9 Special Overlays; 6.9.1 Stang andWalter’s Results [11, 64, 65]; 6.9.2 Anchoring of theOverlay; 6.10 Boundaries and Joints of the Overlays; 6.10.1 Boundaries and Full Depth Joints; 6.10.2 Sawn Joints; 6.11 Conclusion; References; 7 Design, by M. Treviño, J.-L. Granju, H. Beushausen, A. Chabot, H. Mihashi and J. Silfwerbrand; 7.1 Introduction; 7.2 Design for Sufficient Strength; 7.2.1 Overview; 7.2.2 Design Concepts; 7.2.3 Current Overlay Design Procedures; 7.2.4 Reinforcement Design of Overlaid Continuously Reinforced Concrete Pavements (CRCP); 7.2.5 BCO Design Procedures in Other Countries; 7.2.6 Summary and Conclusions; 7.3 Design to Prevent Debonding; 7.3.1 Introduction; 7.3.2 USA Recommendations; 7.3.3 European Requirements; 7.3.4 Japanese Requirements; 7.3.5 Swedish Practice; 7.3.6 Expected Design Shear Strength; 7.4 Conclusion; References; 8 Practice and Quality Assurance, by M. Vaysburd, B. Bissonnette and R. Morin; 8.1 Scope and Definitions; 8.2 Importance of Substrate Surface Preparation; 8.2.1 General; 8.2.2 Safety; 8.3 Concrete Removal; 8.3.1 General; 8.3.2 Removal Methods; 8.3.3 Advantages and Limitations of Concrete Removal Methods; 8.4 Substrate Surface Preparation; 8.4.1 General; 8.4.2 Pre-Overlay Repairs; 8.4.3 Surface; 8.4.4 Moisture Conditioning of the Substrate Prior to Overlay/Repair; 8.4.5 Maintenance of the Prepared Substrate; 8.4.6 Quality Control of Surface Preparation; 8.5 Application; 8.5.1 General; 8.5.2 Workmanship; 8.5.3 Basic Requirement; 8.5.4 Repair Placement; 8.5.5 Consolidation; 8.5.6 Surface Finishing; 8.5.7 Curing; 8.6 Quality Assurance/Construction Inspection; 8.6.1 Scarification and Removal of Unsound Concrete; 8.6.2 Substrate Preparation; 8.6.3 Placement and Consolidation; References; 9 Maintenance and Repair of Overlays, by D.W. Fowler; 9.1 Types and Causes of Distress; 9.2 Evaluation of Damage; 9.3 Repair Methods; 9.3.1 Cracks; 9.3.2 Delaminated Concrete; 9.3.3 Spalls; 9.4 Conclusions; 10 Conclusion, by B. Bissonnette, L. Courard and J.-L. Granju.