Building Recommendation Systems in Python and JAX: Hands-On Production Systems at Scale
Implementing and designing systems that make suggestions to users are among the most popular and essential machine learning applications available. Whether you want customers to find the most appealing items at your online store, videos to enrich and entertain them, or news they need to know, recommendation systems (RecSys) provide the way.

In this practical book, authors Bryan Bischof and Hector Yee illustrate the core concepts and examples to help you create a RecSys for any industry or scale. You'll learn the math, ideas, and implementation details you need to succeed. This book includes the RecSys platform components, relevant MLOps tools in your stack, plus code examples and helpful suggestions in PySpark, SparkSQL, FastAPI, and Weights & Biases.

You'll learn:

  • The data essential for building a RecSys
  • How to frame your data and business as a RecSys problem
  • Ways to evaluate models appropriate for your system
  • Methods to implement, train, test, and deploy the model you choose
  • Metrics you need to track to ensure your system is working as planned
  • How to improve your system as you learn more about your users, products, and business case
1148621928
Building Recommendation Systems in Python and JAX: Hands-On Production Systems at Scale
Implementing and designing systems that make suggestions to users are among the most popular and essential machine learning applications available. Whether you want customers to find the most appealing items at your online store, videos to enrich and entertain them, or news they need to know, recommendation systems (RecSys) provide the way.

In this practical book, authors Bryan Bischof and Hector Yee illustrate the core concepts and examples to help you create a RecSys for any industry or scale. You'll learn the math, ideas, and implementation details you need to succeed. This book includes the RecSys platform components, relevant MLOps tools in your stack, plus code examples and helpful suggestions in PySpark, SparkSQL, FastAPI, and Weights & Biases.

You'll learn:

  • The data essential for building a RecSys
  • How to frame your data and business as a RecSys problem
  • Ways to evaluate models appropriate for your system
  • Methods to implement, train, test, and deploy the model you choose
  • Metrics you need to track to ensure your system is working as planned
  • How to improve your system as you learn more about your users, products, and business case
79.99 In Stock
Building Recommendation Systems in Python and JAX: Hands-On Production Systems at Scale

Building Recommendation Systems in Python and JAX: Hands-On Production Systems at Scale

by Bryan Bischof Ph. D, Hector Yee
Building Recommendation Systems in Python and JAX: Hands-On Production Systems at Scale

Building Recommendation Systems in Python and JAX: Hands-On Production Systems at Scale

by Bryan Bischof Ph. D, Hector Yee

Paperback

$79.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Implementing and designing systems that make suggestions to users are among the most popular and essential machine learning applications available. Whether you want customers to find the most appealing items at your online store, videos to enrich and entertain them, or news they need to know, recommendation systems (RecSys) provide the way.

In this practical book, authors Bryan Bischof and Hector Yee illustrate the core concepts and examples to help you create a RecSys for any industry or scale. You'll learn the math, ideas, and implementation details you need to succeed. This book includes the RecSys platform components, relevant MLOps tools in your stack, plus code examples and helpful suggestions in PySpark, SparkSQL, FastAPI, and Weights & Biases.

You'll learn:

  • The data essential for building a RecSys
  • How to frame your data and business as a RecSys problem
  • Ways to evaluate models appropriate for your system
  • Methods to implement, train, test, and deploy the model you choose
  • Metrics you need to track to ensure your system is working as planned
  • How to improve your system as you learn more about your users, products, and business case

Product Details

ISBN-13: 9781492097990
Publisher: O'Reilly Media, Incorporated
Publication date: 01/09/2024
Pages: 354
Product dimensions: 7.00(w) x 9.19(h) x 0.74(d)

About the Author

Bryan Bischof leads AI at Hex, and is an adjunct professor in the Rutgers Masters of Business and Analytics program where he teaches Data Science. Previously, he was the Head of Data Science at Weights and Biases, where he built the DS, ML, and Data Engineering teams.

Hector Yee is a Staff Software engineer at Google, where he has worked on multiple projects including creating the first content based ranker on image search and self driving car perception. He also worked on the YouTube recommender system and was part of the team that won a technical Emmy Award for their work on personalized video ranking technology. He has an M.S. in computer graphics.
From the B&N Reads Blog

Customer Reviews