Cancer Vaccines: Methods and Protocols

Cancer Vaccines: Methods and Protocols

ISBN-10:
1493951955
ISBN-13:
9781493951956
Pub. Date:
08/23/2016
Publisher:
Springer New York
ISBN-10:
1493951955
ISBN-13:
9781493951956
Pub. Date:
08/23/2016
Publisher:
Springer New York
Cancer Vaccines: Methods and Protocols

Cancer Vaccines: Methods and Protocols

$169.99
Current price is , Original price is $169.99. You
$169.99 
  • SHIP THIS ITEM
    Not Eligible for Free Shipping
  • PICK UP IN STORE
    Check Availability at Nearby Stores

Overview

Cancer Vaccines: Methods and Prools explores the manipulation and modification of immune cells, the manipulation and modification of tumor cells as well as the manipulation of immune/tumor interactions and various delivery mechanisms, with the overall end goal of evoking a tumor-specific response and overcoming the immuno-evasive mechanisms employed by the tumor cells. This detailed volume also covers the subject of cancer vaccines in a more global sense with its section on the advances, challenges, and future of cancer vaccines. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory prools and tips on troubleshooting and avoiding known pitfalls.

Comprehensive and authoritative, Cancer Vaccines: Methods and Prools aims to help guide researchers toward developing further generations of cancer vaccines that are both safe and efficacious, with the hope that cancer vaccines will be the standard of care in the very near future.


Product Details

ISBN-13: 9781493951956
Publisher: Springer New York
Publication date: 08/23/2016
Series: Methods in Molecular Biology , #1139
Edition description: Softcover reprint of the original 1st ed. 2014
Pages: 569
Product dimensions: 7.01(w) x 10.00(h) x (d)

Table of Contents

Single Step Antigen Loading and Maturation of Dendritic Cells Through mRNA Electroporation of a Tumor-Associated Antigen and a TriMix of Costimulatory Molecules.- Generation of Multiple Peptide Cocktail-Pulsed Dendritic Cells as a Cancer Vaccine.- Pulsing Dendritic Cells with Whole Tumor Cell Lysates.- Antigen Trapping by Dendritic Cells for Anti-Tumor Therapy.- Ex Vivo Loading of Autologous Dendritic Cells with Tumor Antigens.- Tumor Antigen/Cytokine-Pulsed Dendritic Cells in Therapy Against Lymphoma.- Dendritic Cells Primed with Protein-Protein Fusion Adjuvant.- Antigen-Specific mRNA Transfection of Autologous Dendritic Cells.- Electroporation of Dendritic Cells with Autologous Total RNA from Tumor Material.- Dendritic Cells Transfected with Adenoviral Vectors as Vaccines.- Genetic Modification of Dendritic Cells with RNAi.- Fast Monocyte-Derived Dendritic Cells-Based Immunotherapy.- Intratumoral Injection of BCG-CWS Pretreated Dendritic Cells Following Tumor Cryoablation.- Exploiting the CD1d-iNKT Cell Axis for Potentiation of DC-Based Cancer Vaccines.- Modification of T Lymphocytes to Express Tumor Antigens.- Genetic Modification of Mouse Effector and Helper T Lymphocytes Expressing a Chimeric Antigen Receptor.- Genetic Modification of Cytotoxic T Lymphocytes to Express Cytokine Receptors.- Monitoring the Frequency and Function of Regulatory T Cells and Summary of the Approaches Currently Used to Inhibit Regulatory T Cells in Cancer Patients.- Cytokine Activation of Natural Killer Cells.- Loading of Acute Myeloid Leukemia Cells with Poly(I:C) by Electroporation.- Autologous Tumor Cells Engineered to Express Bacterial Antigens.- Tumor Cell Transformation Using Antisense Oligonucleotide.- The Direct Display of Costimulatory Proteins on Tumor Cells as a Means of Vaccination for Cancer Immunotherapy.- Cloning Variable Region Genes of Clonal Lymphoma Immunoglobulin for Generating Patient-Specific Idiotype DNA Vaccine.- Heat Shock Proteins Purified from Autologous Tumors Using Antibody-Based Affinity Chromatography.- Invariant Chain-Peptide Fusion Vaccine Using HER-2/neu.- TLR-9 Agonist Immunostimulatory Sequence Adjuvants Linked to Cancer Antigens.- Production of Multiple CTL Epitopes from Multiple Tumor-Associated Antigens.- Preparation of Polypeptides Comprising Multiple TAA Peptides.- Idiotype Vaccine Production Using Hybridoma Technology.- Preparation of Cancer-Related Peptide Cocktails that Target Heterogeneously-Expressed Antigens.- Making an Avipoxvirus Encoding a Tumor-Associated Antigen and a Costimulatory Molecule.- Bacterial Vectors for the Delivery of Tumor Antigens.- Preparation of Peptide Microspheres Using Tumor Antigen-Derived Peptides.- Production of Antigen-Loaded Biodegradable Nanoparticles and Uptake by Dendritic Cells.- Development of Plasmid-Lipid Complexes for Direct Intratumoral Injection.- The Use of Dendritic Cells for Peptide-Based Vaccination in Cancer Immunotherapy.- Advances in Host and Vector Development for the Production of Plasmid DNA Vaccines.- Challenges Facing the Development of Cancer Vaccines.- Future of Cancer Vaccines.

From the B&N Reads Blog

Customer Reviews