Cartesian Cubical Model Categories
This book introduces the category of Cartesian cubical sets and endows it with a Quillen model structure using ideas coming from Homotopy type theory. In particular, recent constructions of cubical systems of univalent type theory are used to determine abstract homotopical semantics of type theory. The celebrated univalence axiom of Voevodsky plays a key role in establishing the basic laws of a model structure, showing that the homotopical interpretation of constructive type theory is not merely possible, but in a certain, precise sense also necessary for the validity of univalence. Fully rigorous proofs are given in diagrammatic style, using the language and methods of categorical logic and topos theory. The intended readers are researchers and graduate students in homotopy theory, type theory, and category theory.

1148257121
Cartesian Cubical Model Categories
This book introduces the category of Cartesian cubical sets and endows it with a Quillen model structure using ideas coming from Homotopy type theory. In particular, recent constructions of cubical systems of univalent type theory are used to determine abstract homotopical semantics of type theory. The celebrated univalence axiom of Voevodsky plays a key role in establishing the basic laws of a model structure, showing that the homotopical interpretation of constructive type theory is not merely possible, but in a certain, precise sense also necessary for the validity of univalence. Fully rigorous proofs are given in diagrammatic style, using the language and methods of categorical logic and topos theory. The intended readers are researchers and graduate students in homotopy theory, type theory, and category theory.

69.99 Pre Order
Cartesian Cubical Model Categories

Cartesian Cubical Model Categories

by Steve Awodey
Cartesian Cubical Model Categories

Cartesian Cubical Model Categories

by Steve Awodey

Paperback

$69.99 
  • SHIP THIS ITEM
    Available for Pre-Order. This item will be released on December 18, 2025

Related collections and offers


Overview

This book introduces the category of Cartesian cubical sets and endows it with a Quillen model structure using ideas coming from Homotopy type theory. In particular, recent constructions of cubical systems of univalent type theory are used to determine abstract homotopical semantics of type theory. The celebrated univalence axiom of Voevodsky plays a key role in establishing the basic laws of a model structure, showing that the homotopical interpretation of constructive type theory is not merely possible, but in a certain, precise sense also necessary for the validity of univalence. Fully rigorous proofs are given in diagrammatic style, using the language and methods of categorical logic and topos theory. The intended readers are researchers and graduate students in homotopy theory, type theory, and category theory.


Product Details

ISBN-13: 9783032087294
Publisher: Springer Nature Switzerland
Publication date: 12/18/2025
Series: Lecture Notes in Mathematics , #2385
Product dimensions: 6.10(w) x 9.25(h) x (d)

About the Author

Steve Awodey holds the Dean’s Chair in Logic at Carnegie Mellon University, where he is Professor of Philosophy and Mathematics. A founder of Homotopy Type Theory, he co-organized a special research year on Univalent Foundations at the Institute for Advanced Study (Princeton). His numerous publications include the textbook Category Theory and the collaborative volume Homotopy Type Theory: Univalent Foundations of Mathematics. He serves on several journal editorial boards and is coordinating editor of the Journal of Symbolic Logic. He has held visiting appointments at the Poincaré Institute (Paris), Newton Institute (Cambridge), Hausdorff Institute (Bonn), and the Centre for Advanced Studies (Oslo), and is currently a Royal Society Wolfson Visiting Fellow at Cambridge University.

Table of Contents

Chapter 1. Introduction.- Chapter 2. Cartesian cubical sets.- Chapter 3. The cofibration weak factorization system.- Chapter 4. The fibration weak factorization system.- Chapter 5. The weak equivalences.- Chapter 6. The Frobenius condition.- Chapter 7. A universal fibration.- Chapter 8. The equivalence extension property.- Chapter 9. The fibration extension property.

From the B&N Reads Blog

Customer Reviews