Pub. Date:
Cambridge University Press
Chain Conditions in Topology

Chain Conditions in Topology

by W. W. Comfort, S. Negrepontis


Current price is , Original price is $43.99. You
Select a Purchase Option
  • purchase options
  • purchase options


Chain Conditions in Topology

A chain condition is a property, typically involving considerations of cardinality, of the family of open subsets of a topological space. (Sample questions: (a) How large a fmily of pairwise disjoint open sets does the space admit? (b) From an uncountable family of open sets, can one always extract an uncountable subfamily with the finite intersection property. This monograph, which is partly fresh research and partly expository (in the sense that the authors co-ordinate and unify disparate results obtained in several different countries over a period of several decades) is devoted to the systematic use of infinitary combinatorial methods in topology to obtain results concerning chain conditions. The combinatorial tools developed by P. Erdös and the Hungarian school, by Erdös and Rado in the 1960s and by the Soviet mathematician Shanin in the 1940s, are adequate to handle many natural questions concerning chain conditions in product spaces.

Product Details

ISBN-13: 9780521090629
Publisher: Cambridge University Press
Publication date: 11/27/2008
Series: Cambridge Tracts in Mathematics Series , #79
Pages: 316
Product dimensions: 5.50(w) x 8.50(h) x 1.00(d)

Table of Contents

1. Some infinitary combinatorics; 2. Introducing the chain conditions; 3. Chain conditions in products; 4. Classes of calibres, using Σ -products; 5. Calibres of compact spaces; 6. Strictly positive measures; 7. Between property (K) and the countable chain condition; 8. Classes of compact-calibres, using spaces of ultralilters; 9. Pseudo-compactness numbers: examples; 10. Continuous functions on product spaces.

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews