Chaotic Motions in Nonlinear Dynamical Systems
Discoveries of chaotic, unpredictable behaviour in physical deterministic systems has brought about new analytic and experimental techniques in dynamics. The modern study of the new phenomena requires the analyst to become familiar with experiments (at least with numerical ones), since chaotic solutions cannot be written down, and it requires the experimenter to master the new concepts of the theory of nonlinear dynamical systems. This book is unique in that it presents both viewpoints: the viewpoint of the analyst and of the experimenter. In the first part F. Moon outlines the new experimental techniques which have emerged from the study of chaotic vibrations. These include Poincaré sections, fractial dimensions and Lapunov exponents. In the text by W. Szemplinska-Stupnicka the relation between the new chaotic phenomena and classical perturbation techniques is explored for the first time. In the third part G. Iooss presents methods of analysis for the calculations of bifurcations in nonlinear systems based on modern geometric mathematical concepts.
1119290589
Chaotic Motions in Nonlinear Dynamical Systems
Discoveries of chaotic, unpredictable behaviour in physical deterministic systems has brought about new analytic and experimental techniques in dynamics. The modern study of the new phenomena requires the analyst to become familiar with experiments (at least with numerical ones), since chaotic solutions cannot be written down, and it requires the experimenter to master the new concepts of the theory of nonlinear dynamical systems. This book is unique in that it presents both viewpoints: the viewpoint of the analyst and of the experimenter. In the first part F. Moon outlines the new experimental techniques which have emerged from the study of chaotic vibrations. These include Poincaré sections, fractial dimensions and Lapunov exponents. In the text by W. Szemplinska-Stupnicka the relation between the new chaotic phenomena and classical perturbation techniques is explored for the first time. In the third part G. Iooss presents methods of analysis for the calculations of bifurcations in nonlinear systems based on modern geometric mathematical concepts.
54.99 In Stock
Chaotic Motions in Nonlinear Dynamical Systems

Chaotic Motions in Nonlinear Dynamical Systems

Chaotic Motions in Nonlinear Dynamical Systems

Chaotic Motions in Nonlinear Dynamical Systems

Paperback(1988)

$54.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Discoveries of chaotic, unpredictable behaviour in physical deterministic systems has brought about new analytic and experimental techniques in dynamics. The modern study of the new phenomena requires the analyst to become familiar with experiments (at least with numerical ones), since chaotic solutions cannot be written down, and it requires the experimenter to master the new concepts of the theory of nonlinear dynamical systems. This book is unique in that it presents both viewpoints: the viewpoint of the analyst and of the experimenter. In the first part F. Moon outlines the new experimental techniques which have emerged from the study of chaotic vibrations. These include Poincaré sections, fractial dimensions and Lapunov exponents. In the text by W. Szemplinska-Stupnicka the relation between the new chaotic phenomena and classical perturbation techniques is explored for the first time. In the third part G. Iooss presents methods of analysis for the calculations of bifurcations in nonlinear systems based on modern geometric mathematical concepts.

Product Details

ISBN-13: 9783211820629
Publisher: Springer Vienna
Publication date: 06/07/1988
Series: CISM International Centre for Mechanical Sciences , #298
Edition description: 1988
Pages: 193
Product dimensions: 6.69(w) x 9.61(h) x 0.02(d)

Table of Contents

Contents: Preface.- F.C. Moon: Experiments in Chaotic Dynamics.- W. Szemplinska-Stupnicka: Chaotic and Regular Motion in Nonlinear Vibrating Systems.- G. Iooss: Local Techniques in Bifurcation. Theory and Nonlinear Dynamics.
From the B&N Reads Blog

Customer Reviews